AV=VA

AVEVA™ SQLData Script Library User Guide

AV=VA

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved.

No part of this documentation shall be reproduced, stored in a retrieval system, or transmitted by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of AVEVA.
No liability is assumed with respect to the use of the information contained herein.

Although precaution has been taken in the preparation of this documentation, AVEVA assumes no responsibility
for errors or omissions. The information in this documentation is subject to change without notice and does not
represent a commitment on the part of AVEVA. The software described in this documentation is furnished under
a license agreement. This software may be used or copied only in accordance with the terms of such license
agreement.

ArchestrA, Avantis, Citect, DYNSIM, eDNA, EYESIM, InBatch, InduSoft, InStep, IntelaTrac, InTouch, OASyS,
PIPEPHASE, PRiSM, PRO/II, PROVISION, ROMeo, SIM4ME, SimCentral, SimSci, Skelta, SmartGlance, Spiral
Software, WindowMaker, WindowViewer, and Wonderware are trademarks of AVEVA and/or its subsidiaries. An
extensive listing of AVEVA trademarks can be found at: https://sw.aveva.com/legal. All other brands may be
trademarks of their respective owners.

Publication date: Wednesday, July 13, 2022
Publication ID: 953403

Contact Information

AVEVA Group plc
High Cross
Madingley Road
Cambridge

CB3 OHB. UK

https://sw.aveva.com/
For information on how to contact sales and customer training, see https://sw.aveva.com/contact.
For information on how to contact technical support, see https://sw.aveva.com/support.

To access the AVEVA Knowledge and Support center, visit https://softwaresupport.aveva.com.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 2

https://sw.aveva.com/legal

AV=VA

Contents

Chapter 1 Using the SQLData ScriptLibrary..............cciiiiiiiieeeeeee... 8

About Using the SQLData Script Library.ottt i ittt ittt ieeterneranannsnannennns 8
Importing and Accessing the SQLData Script Library. oottt ittt ittt tennnennnannns 8
SQLData Script Library Interface.c. ittt i it ittt ieteeteneanranransaeanaannans 9
SQLData Script Library Architecture. e e 9
SQLData Script Library Work FIOW.o ittt ittt ittt ittt tntentensansonsosanssnsnnsns 11
Creating a Connection Object witha Command. i e 11
Creating a Connection Object with a Transaction. i i e 12
Specifying Connection StriNgs.ot e e 12
Connecting to a SQL Server Data SOUIMCe. oottt e e et e e e 12
Connectingtoan Oracle Data SoUICe.ottt e et et et e e e 12
Connecting to Microsoft Access through OLEDB.ttt et e 13
Connecting to Microsoft Excel through OLEDB. i i e 13
EXamPle SCriPtS. . oot ittt et it it e e e et et a et e e a e e e e e 13
Overview of SamPle SCripEs. . ..ot e e 13
Detailed Description of Sample SCripts.t e 13
Asynchronous Command SCript. oot e e e 14
Query Script Configuration. e 14

Process Script Configuration. i e 15

QUENY SCript CO. . oottt e e e e e 15

Process SCript Code.ttt e e 15
Synchronous Transaction SCript. . .. oottt e e e e e e e e e e e 16
QueryandProcess SCript Code. vt it e 17
Chapter2 aaDBAccessObject.ciiiiiiiiiiiiiini e rnnenonnnonnnnns 18
About aaDBACCESS ObjeCt. ittt ittt it i it et e et 18
Creating a Reusable Connection Object.ottt i i et e tieenranrneaneaneannnns 18
Creating a Unique Connection Object. v iii ittt it ittt iitttennennesnsanssnsossssnnnsans 18
Differences Between CreateConnection() and GetConnection(). v et it it ittt e trnnernnnennns 18
Working With Connections. iiiiiiii ittt ittt iiitintentanensanesnssnssnsonsonsnnsnsns 19
Windows Integrated SECUNItY.ottt e e e e 19
WiNAOWS ACCOUNT. . . ottt et e e e e e e e e et e e e e e e 19
SQL Server AUThentiCatioNn. ot e 20

1Y T2 o T £ 20
CreateCoNNECHION). « ottt e e e 20

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 3

_AV — V A AVEVA™ SQLData Script Library User Guide

Contents

Connecting to Databases Other Than SQL Server. e e e e 20
GetCoMMaANA(). . ottt e e e e 21
GetCONNECHON(). . ot et ittt 21

AUthentication.o e e 22

Connecting to Databases Other Than SQL Server. e e e e 22
GetDIAgNOSTICS). « vttt ettt et e e e 23
GetTranSaCtioN (). . .ottt et e e 23
LOEDIaGNOSTICS). < v v ettt e e e e e 23
REMOVECOMMAN(). . .ottt 23
REMOVETIANSACHON(). -« ottt et ettt e e e e e 24
RESEIDIAgNOSHICS. . . ittt e e 24
SNULAOWN (). . ot e 24

Chapter 3 aaDBCommandObject.............ciiiiiiiiinnneeeeeereeeeeaa. 25

About aaDBCommand ObjJect. i ittt ittt i et ettt et et et e e a e, 25
1Y =1 T Yo 26
ADAROW(). -« v e e e e e e e e e e e e 26
DeleteCUITENTROW(). . . ottt e e e e 26
DSOS).« v v ettt e 26
EXECULEASYNC). « v o ettt et e e e e e e e e 27
EXECULEASYNCCANCRI(). . . ottt ettt e e e e 27
EXECULESYNC(). « o v et et e 27
GetCurrentRowColumnByIndex().ottt 27
GetCurrentRoOWCOoIUMNBYNGME(). . . o oot i e e e e e e e e 28
GetDataS et (). . ottt e 28
GEUA(). + v e e et e e e 29
GetParameterByIndeX().o it 29
GetParameterBYNamME(). . . oot e 29
GREROW).« ottt et 30
SaVECNANGESASYNC(). v ottt it 30
SaAVECNANGESSYNC). « o ettt e 31
SEIBCEROW ().« o v ettt 31
SeleCtTablE(). . . ot 31
StCUITENTROW(). o ot ittt e e e e 32
SetCurrentRowColumnByIndeX().ottt e 33
SetCurrentRoWColUMNBYNAME(). . . o oottt e e e e e e 33
SetParam Type Methods for SQL Serverand Oracle.t i e et e e 34
OULPUL Parameeters. . .t e e e e e e e 35
SetBitParameterByName().ttt 35
SetCharParameterByName().ottt e e e 36
SetDecimalParameterByName().ot it 36
SetDateTimeParameterByName(). oot e e e 37
SetDoubleParameterByName(). o oottt 38
SetFloatParameterByName(). oottt e 38
SetIntParameterByName().ottt 39
SetLongParameterByName().ottt e 40
SetParam Type Methods for OLEDB. it e e et et et ettt e et 40
SetBitParameterBylndeX(). . ..o oot 41

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 4

_AV — V A AVEVA™ SQLData Script Library User Guide

Contents

SetCharParameterBylndeX().o vttt e 42
SetDateTimeParameterBylndex(). oottt e 42
SetDecimalParameterBylndeX(). v it e 43
SetDoubleParameterBylndeX(). oottt e 44
SetFloatParameterByIndex().ottt 45
SetIntParameterByIndeX(). . ..o oot e 45
SetLongParameterByINdeX(). oot 46
oo o 1= o o =T 46
CommaNdTimeEOUL. . . .ottt e e e e 46
CUrreNtROWNUM D BT, . o e e e e e e e e e e e 47
CurrentTableNUmMbEr. . ..o e e e e 47
DiSPOSEA. . o\ ittt e 47
EXECULIONS ate. . . ot e e e e 47
LaStEXECUTION E O, . ottt e e et e e e e e 47
ROW G OUNT. .« ot e e e e e 48
PUBliC ENUMEIatioNS. . ..ottt ittt ittt ittt et teiaetenesenneeanseanesonnsssnssenssennsannas 48
AaDBComMMaANdState. . ..o e e e 48
Created. . .o e e 48
QUEBUBA. . ot e e e 48
Failed. . o e e e 48
Completed. . .o e e 48
CanCeled. . .o e 48
DiSPOSEA. . ottt e e e 49
AADBCOMMaANA Y PO, . ittt e e e 49
SOIStatEMENt. . . o e e 49
STOrEAPIOCEAUNE. . . ot e e e 49
aaDBParameterDireCtioN. o e e 49
DU, . e e e e e e e 49
INPULOULPUL. .« . oo e e e e e e e e 49
(1 1 o 1 49
RETUINVAlUE. . . o e e e 49

Chapter 4 aaDBConnectionObject.............iiiiiiiiiiiiiiieieeennennnaa. 50

About aaDBConnection Object.o iii ittt i it e ittt et et e et 50
ConNECtiON POOIING. . ..ottt ittt ittt ittt it attasenseasoosossassasonsansonsossassnsanss 50
LY =1 d 4T Yo 50
CreateCommand(). . . oottt e 51
CreateCommand for Oracle. ot e e e e e e 51
CreateCommand for OLEDB.ottt et et et e e e e e 51
CreateTranSaCtioN (). . oot vttt e e e e 52
DISPOSE ().« v v vttt e e e 52
GetDIAgNOSTICS). « v v v vt ettt e e e e 52

oY =4 D =Y 4 To 1y u ok) S 52
RESEIDIAENOS I CS. .« o ittt e e e 53

Lo o o T=] o o = 53
CoNNECHONNAME. . . i e e e e e 53
CoNNECHIONS AtE. . . ot e e 53

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 5

AV — V A AVEVA™ SQLData Script Library User Guide
- Contents

DiSPOSEA. .« ottt e e e 53
13 o = oY 54
PUBIIC ENUMEIatioNS. . .. oottt ittt ittt it teneeneeneenenaeaneensansansansnessnsansansannnnnns 54
2aDBCoNNeCtiONState. e e e e e 54
DISCONNECEEA. . . vttt e 54
CONNECEING. . ot it e e e e 54
CONNECEE. . .ttt 54

Create. . .ot e 54
DiSPOSEA. . o\ ettt e e e 54

AAD B lONNECT ON Y P, .« o v ottt et e e e e 54
1Yo | 55

01D, o i 55

(@ 1= o1 [P 55
Chapter5 aaDBRow Object.cciiiiiiiiiiiiiiiiiinerennrennssnnnas 56
10 213 11V 0] < =T of 56
AaDBROW —PUbliC CONSTIUCTOr. . ..ot e e e e e e e e 56

LY =1 d 4T Yo 57
GetColUMNNGAME(). . oot e e 57
GetColumNValUB(). . . oot 57

o o o T=] o o= 57
ColUMNCOUNT. .« oot e e e e 57
COlUMNNAIMES. .ttt e e e e e e e 57
ColUMNVAIUES. .« .ot e e e 57

Chapter 6 aaDBTransactionObject...............iiiiiiiiinnneeeeeneneaes. 59

10121 1 =T ToF Lot oo 59
1Y =3 1 1 Vo e £ 59
CreateCommMand(). . . oo ottt e 59
DiSPOSE ().« v v ettt e e 60
EXECULEASYNC). « v o ettt et e e e e e 60
EXECULEASYNCCANCERI(). . . ottt ettt e e e e e 61
EXECULESYNC(). « ottt it 61
GREID).« v ettt e 61

o 0T 1= o = 62
DiSPOSEA. . o\ vttt i e 62
EXECULIONSTAtE. . . o e e e e 62
FailedCommandID.t e e 62
LastEXECUTIONEITOr. . . oo e e e e e e 62
eV o ol = ¥ T4 s =T - o oo 63
AaDBTraNsactioNState. . . .t e e 63
Created. . .ottt 63

QUEUE. .« . oot e e e e 63

Failed. . . 63
Completed. ..o e e e 63
CanCeled. . .. 63

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 6

A V — VA AVEVA™ SQLData Script Library User Guide
— Contents

DSOS, . oottt e e e e 63

AppendiXx A ErrorCodes.coiiiiiiiiiiiitenennnnnaeeesseeenannaess. 04

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 7

AV=VA

Chapter 1

Using the SQLData Script Library

About Using the SQLData Script Library

The SQLData Script Library provides database integration using ArchestrA scripting. The SQLData Script Library
provides the following benefits:

¢ Your resources are managed more efficiently because the connection manager reduces the number of open
connections to the database provider. This activity is known as connection pooling.

¢ You can process scripts asynchronously, which reduces impact on the hosting engine during the following
activities:

¢ Opening a connection to a data source
e Running SQL queries

¢ Running SQL transactions

Note: It is recommended, to avoid returning excessive amount of data using script library commands, for
example executing 15,000 SQL commands which each select 200 records from the Person.Contact table
in the AdventureWorks sample database. This can lead to a crash of the host engine. To avoid this
problem, consider using the TOP command to limit the number of records returned.

Importing and Accessing the SQLData Script Library

The SQLData Script Library is contained in the file named aaDBIntegration.aaSLIB. Copy the file to your ArchestrA
development computer.

To access the SQLData Script Library
1. Open the ArchestrA IDE.
2. On the main menu, click Galaxy/Import/Script Library.

After you import the SQLData Script Library, you can access the library functions from the Script Function
Browser in the Script tab of any object. The functions are visible in the Types section.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 8

A V — VA AVEVA™ SQLData Script Library User Guide
— Chapter 1 — Using the SQLData Script Library

Script Function Browser E2

== Types i’

- aalBAccess

H- [aaDBClient, aaDECommand

+-[aaDEClient, aabBConnection

H- {5 aaDBClient, aaDERow

+- [aaDEClient. aabBTransaction

+- & aaDBCommandstate

v aaDBCommandType

+- {5 aaDBConnectionState

v aaDBConnectionType

t-[&f’ aaDBParameterDirection

+- [aaDETransactionState

H-T& Microsoft,CSharp, CSharpCodeProvider

H-J Microsoft.SqlServer. Server DatafccessKind

H- & Microsoft,SqlServer,Server Format

H- Microsoft.Sqlserver. Server, IBinarySerialize

H- Microsoft, SqlServer, Server InvalidUdtException

b Microsoft, SqlServer, Server, SqlContext _ILI
»

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

For more information about working with function libraries, see the AVEVA Application Server User’s Guide.

SQLData Script Library Interface

This section provides an overview of the SQLData Script Library interface.

SQLData Script Library Architecture

You can integrate the SQLData Script Library into ArchestrA by using synchronous or asynchronous scripting. The
SQLData Script Library contains the following public objects:

aaDBAccess
aaDBConnection
aaDBTransaction
aaDBCommand

aaDBRow

You can find details about these objects as well as their methods, properties, and enumerations in the remaining
chapters in this guide.

The following figure shows connection pooling in the SQLData Script Library. Although each script generates its
own connection object in the script library, scripts with identical connection strings are allocated to the same
connection pool. The result is fewer connections to the database.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 9

AV=VA

i
;
/

AT

Synchronous
I'I soripts on all
l'., chjects on

AppEngne ¥

\

//'

Asyrchronous
script on
AppEngine X

Cornection 3

"Database=A;

User=B"

r |
Conrection1 Cornedion 2
"Database=4; "Database=A;
Lser=y" User=B"

!
™,
Y
LT
Cornection Pod 1
"Database=A;
Lser=y"

Cornection Pod 2

“[Database=4;
User=g"

AVEVA™ SQLData Script Library User Guide
Chapter 1 — Using the SQLData Script Library

The following figure shows a conceptual diagram of the relationships among the various components of the
SQLData script library.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved.

Page 10

A V — VA AVEVA™ SQLData Script Library User Guide

Chapter 1 — Using the SQLData Script Library

aaDBRow
A -

GetRow() T aaDBComman

F

ExecuteAsynic()
EtEf; uteSync()

r CreateCommand(y

aa b BCommand H aal B Transaction "

A .

CreateComna nd() CreaeTransaction|)

aaDB Connection

CreateConnection()
GatConnection()

aa DB Integration

Note that aaDBRow is one mechanism provided by aaDBCommand to read and modify data returned from the
SQL query. The other mechanisms are implemented as methods of aaDBCommand.

SQLData Script Library Work Flow

This section shows the work flow to create a connection object with a command and a transaction. This section
also provides connection string examples.

Creating a Connection Object with a Command

SQLData scripts follow a typical flow when they are written without transactions:
1. Create a connection object.
2. Create one or more command objects using the CreateCommand() method of the connection object.

3. For each command object whose SQL statement contains parameters, initialize each parameter by using

either the Set<Type>ParameterByName() method or the Set<Type>ParameterBylndex() method of the
command object.

4. Run the command object either synchronously or asynchronously.

When command processing is complete, you can retrieve and modify the returned dataset. If you modify the
dataset, you can save it back to the database either synchronously or asynchronously.

You can reuse command objects indefinitely. When finished, clean up the command objects by calling their
Dispose() methods.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 11

A V — VA AVEVA™ SQLData Script Library User Guide
— Chapter 1 — Using the SQLData Script Library

Creating a Connection Object with a Transaction
SQLData scripts follow a typical flow written with transactions:
1. Create a connection object.
2. Create a transaction object by using the CreateTransaction() method of the connection object.

3. Add one or more command objects to the transaction by using the CreateCommand() method of the
transaction object.

4. For each command object whose SQL statement contains parameters, initialize each parameter by using
either the Set<Type>ParameterByName() method or the Set<Type>ParameterBylndex() method of the
command object.

5. Run the transaction object either synchronously or asynchronously.

If any of the commands fails or returns an error, the transaction and any commands that ran within the
transaction are rolled back. The transaction is returned with the appropriate indicator

When transaction processing is complete, you can retrieve and modify the returned dataset for each command
in the transaction that returns data. If you modify a dataset, you can save it back to the database either
synchronously or asynchronously.

You can reuse transaction objects indefinitely. When finished, clean up the transaction object and command
objects by calling their Dispose() methods.

Specifying Connection Strings

The SQLData Script Library uses a connection string to specify the parameters for a database connection. The
connection string is specified by Microsoft in their ADO.NET implementation. You can find details about the
connection string and its parameters in the following locations:

http://msdn2.microsoft.com/en-us/library/
ms254978(VS.85) .aspx

http://msdn2.microsoft.com/en-us/library/
ms254499. aspx

The following examples show how to write connection strings for the most commonly used data providers.

Connecting to a SQL Server Data Source

The following script shows an example connection for SQL Server:
Connection=aaDBAccess.GetConnection(
me.ConnectionString,
aaDBConnectionType.Sql);

Using aaDBConnectionType.Sql is synonymous with the form of GetConnection() that takes only a connection
string. Use the connection string example shown in Connecting to a SQL Server Data Source in place of
me.ConnectionString.

Connecting to an Oracle Data Source

The following script shows an example connection for Oracle:
Connection=aaDBAccess.GetConnection("Provider=MSDAORA;
Data Source=myOracleServer;User ID=<name>;

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 12

A V — VA AVEVA™ SQLData Script Library User Guide
— Chapter 1 — Using the SQLData Script Library

Password=<password>.",aaDBConnectionType.Oracle);

Connecting to Microsoft Access through OLEDB

The following script shows an example connection for Microsoft Access through OLEDB:
Connection=aaDBAccess.GetConnection(

"Provider=Microsoft.Jet.OLEDB 4.0;

Data Source=C:\myAccessDb.mdb",

aaDBConnectionType.0leDb);

Connecting to Microsoft Excel through OLEDB

The following script shows an example connection for Microsoft Excel through OLEDB:
Connection=aaDBAccess.GetConnection(

"Provider=Microsoft.Jet.OLEDB 4.0;

Data Source=C:\NameAndAddress.xls;

Extended Properties=Excel 8.0;",

aaDBConnectionType.0leDb);

Note: Microsoft Excel does not support transactions (commit or rollback).

Example Scripts

The following two examples illustrate the use of the SQLData Script Library to access a database.

Note: These scripts are provided only as a reference.

Overview of Sample Scripts

The sample scripts have the following purpose in a larger, ArchestrA context:

¢ The script provides an object that other requesting objects can use to read the specified column of a row
whose part number is given and then return the column value to the requesting object.

* The requesting object provides the row name, part number, and start signal in UDAs.

¢ The sample object returns the requested row value and done signal in UDAs.

Detailed Description of Sample Scripts

This section is a detailed step-by-step description of what is happening in the sample scripts that follow. For
more information about using application objects, see the AVEVA Application Server User’s Guide.

1. Create a connection object and supply the connection string. The connection string in this example is a literal
string, but you can use a connection string supplied by another ArchestrA object through a UDA.

2. If you are using transactions, create a transaction object on the connection object that you created.

3. Create a command object. This example supplies a literal string for the SQL statement, but it could be
supplied by another ArchestrA object through a UDA. Note that the SQL statement is a query with a
parameter, which allows the requesting object to specify the column to read:

a. If you are not using transactions, create the command object on the connection object.

b. If you are using transactions, create the command object on the transaction object.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 13

A V — VA AVEVA™ SQLData Script Library User Guide
— Chapter 1 — Using the SQLData Script Library

4. Because the SQL statement of the command object contains a parameter, you must initialize that parameter
object (or the transaction that contains it).

5. Run the transaction or command using either the ExecuteAsync() or ExecuteSync() methods.

6. If the command or transaction is processed synchronously, the SQLData Script Library does not return from
the ExecuteSync() method until the command is complete. Because processing can take an extended period
of time, you should use an asynchronous script (that is, a script that is not synchronized with the scan of the
ArchestrA AppEngine).

If the command or transaction is executed asynchronously, poll for completion as follows:

¢ [f your script runs synchronously with the scan of the ArchestrA AppEngine, you must signal polling to
occur by a script once per scan cycle of the engine. This example script starts a second polling script, but
you can write a single script with a state variable that starts processing in one state and polls in the other
state.

¢ [f your script runs asynchronously with the ArchestrA AppEngine, you can poll in the following lines of
the same script that starts processing using a while loop, which can take an extended period of time to
finish.
7. When the command or transaction completes without an error, the result can be read from the command
object using the parameter that was initialized before the command object was run.

8. Check for errors at each of the major script processing steps.

Asynchronous Command Script

The scripts in this object show how to use asynchronous SQL processing in the SQLData Script Library. This script
is written to use a command object directly on the connection, without using a transaction object. For
comparison, see Synchronous Transaction Script on page 23 where the example uses the synchronous SQL
processing for a command object on a transaction object.

This object is written with two scripts. One script starts asynchronous command processing (the Query script)
and the other script polls for asynchronous command completion and results manipulation (the Process script).
Both scripts run synchronously with the ArchestrA AppEngine scan. To use the scripts, set the number to search
for in the PartNumber User Defined Attribute (UDA) and column whose value is to be read in the ColumnToRead
UDA. Signal the script to run by setting the ReadCommand UDA to True. When the script finishes processing, the
ColumnReadDone UDA becomes True, and the results are in the ColumnValue UDA.

Query Script Configuration
On the Script tab of the SQLData Object Editor, configure the Query script with the following attributes.

Attribute Value

Execution Type Execute
Expression me.ReadCommand
Trigger Type OnTrue

Runs Asynchronously Selected

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 14

A V — VA AVEVA™ SQLData Script Library User Guide
— Chapter 1 — Using the SQLData Script Library

Process Script Configuration
On the Script tab of the SQLData Object Editor, configure the Process script with the following attributes.

Attribute Value

Execution Type Execute

Expression me.ProcessCommand
Trigger Type WhileTrue

Runs Asynchronously Selected

Query Script Code

Use the following sample code for the Query script.
DIM Connection as aaDBClient.aaDBConnection;
DIM Command as aaDBClient.aaDBCommand;
'Create a connection object with the connection string.
LogMessage("Creating connection");
Connection = aaDBAccess.CreateConnection("Data Source=localhost;Initial
Catalog=AdventureWorks;Integrated Security=true");
'Create a command object, with a SQL statement.
LogMessage("Creating a command object");
Command = Connection.CreateCommand("Select * from Production.Product WHERE ProductNumber =
@ProductNumber", aaDBCommandType.SqlStatement, true);
'We used a parameter to specify the value for the ProductNumber field, so initialize it.
Command.SetCharParameterByName("ProductNumber"”, me.PartNumber,
aaDBParameterDirection.Input, 50);
'Everything is ready, let's execute the command async.
LogMessage("Executing command async");
DIM ResultCode as integer;
ResultCode = Command.ExecuteAsync();
if ResultCode <> @ then
'Failed to start async execution, report the reason.
LogMessage("Got error " + ResultCode + " executing command async");
else
'Execution started, identify the command by ID, for use later.
LogMessage("Command async execution started successfully");
me.CommandID = Command.GetID();
'Allow the Process script to run.
me.ProcessCommand = true;
endif;
'Reset for next time
me.ReadCommand = false;

Process Script Code

Use the following sample code for the Process script.
DIM Command as aaDBClient.aaDBCommand;
'Retrieve the command object using its ID.
Command = aaDBAccess.GetCommand(me.CommandID);
if Command <> null then

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 15

A V — VA AVEVA™ SQLData Script Library User Guide

Chapter 1 — Using the SQLData Script Library

'Poll for command complete
if Command.ExecutionState <> aaDBCommandState.Queued then
LogMessage("Command execution state is " + Command.ExecutionState);
if Command.ExecutionState == aaDBCommandState.Completed then
DIM Rows as integer;
Rows = Command.RowCount;

LogMessage("Row count returned from command is " + Rows);
'We expect one row, use the first one, if we have any.
if Rows > @ then
LogMessage("Getting column '" + me.ColumnToRead + "' from row 0");

Command.SelectRow(0);

'Return the requested column value from this row, signal done.
me.ColumnValue = Command.GetCurrentRowColumnByName(me.ColumnToRead);
me.ColumnReadDone = true;

endif;
endif;
'"When done, dispose the command.
Command.Dispose();
'Reset for next time
me.ProcessCommand = false;
endif;
else
LogMessage("Cannot find command " + me.CommandID);
me.ProcessCommand = false;
endif;

Synchronous Transaction Script

The single script for this SQLData object shows how to use the synchronous SQL processing in the SQLData Script
Library. This script is uses a transaction object with the command object on the transaction. For comparison, see
Asynchronous Command Script on page 19 where the example uses the command object directly on the
connection, without a transaction.

This transaction object is written with a single script called QueryandProcess, which performs the SQL
processing synchronously and then manipulates the results. This script runs without synchronizing with the
ArchestrA AppEngine scan (asynchronous script). To use the script, set the part number to search for in the
PartNumber UDA and the column whose value is to be read in the ColumnToRead UDA. Signal the script to run
by setting the ReadTransaction UDA to True. When the script finishes processing, the ColumnReadDone UDA
becomes True and the results are in the ColumnValue UDA.

QueryandProcess Script Configuration

On the Script tab of the SQLData Object Editor, configure the QueryandProcess script with the following

attributes.

Attribute Value

Execution Type Execute

Expression me.ReadTransaction
Trigger Type OnTrue

Runs Asynchronously Selected

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 16

A V — VA AVEVA™ SQLData Script Library User Guide

Chapter 1 — Using the SQLData Script Library

QueryandProcess Script Code

Use the following sample code for the QueryandProcess script.
DIM Connection as aaDBClient.aaDBConnection;
DIM Commandl as aaDBClient.aaDBCommand;
DIM Transaction as aaDBClient.aaDBTransaction;
"Create a connection object with the connection string.
LogMessage("Creating connection");
Connection = aaDBAccess.CreateConnection("Data Source=localhost;Initial
Catalog=AdventureWorks;Integrated Security=true");
'Create a transaction object within the connection object.
LogMessage("Creating transaction object");
Transaction = Connection.CreateTransaction();
"Create a command object for the transaction object, with a SQL statement.
LogMessage("Creating a command object");
Commandl = Transaction.CreateCommand("Select * from Production.Product WHERE ProductNumber
= @ProductNumber", aaDBCommandType.SqlStatement, true);
'"We used a parameter to specify the value for the ProductNumber field, so initialize it.
Commandl.SetCharParameterByName("ProductNumber"”, me.PartNumber,
aaDBParameterDirection.Input, 50);
"Everything is ready, let's execute the transaction sync.
LogMessage("Executing transaction sync");
DIM ResultCode as integer;
ResultCode = Transaction.ExecuteSync();
if ResultCode <> @ then
'Failed to execute transaction sync, report the reason.
LogMessage("Got error " + ResultCode + " executing transaction sync");
else
if Transaction.ExecutionState == aaDBTransactionState.Completed then
DIM Rows as integer;
Rows = Commandl.RowCount;
LogMessage("Row count returned from command is " + Rows);
‘Use other methods of script library to read data and assign to UDAs, etc.
if Rows > @ then
LogMessage("Getting column
Commandl.SelectRow(0);
'Return the requested column value from this row, signal done.
me.ColumnValue = Commandl.GetCurrentRowColumnByName(me.ColumnToRead);
me.ColumnReadDone = true;
endif;
‘When done, dispose the command.
Command1.Dispose();
endif;
'When done, dispose the transaction.
Transaction.Dispose();
endif;
'Reset for next time
me.ReadTransaction = false;

+ me.ColumnToRead + "' from row 0");

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 17

AV=VA

Chapter 2
aaDBAccess Object

About aaDBAccess Object

The aaDBAccess object exposes only static methods. Use static methods with the aaDBAccess object to request

a connection to the data source by providing a connection string. You can use two categories of methods to
create a database connection:

¢ Areusable connection object: GetConnection()
¢ A unique connection object: CreateConnection()

By default, the SQLData Script Library assumes that a connection to a SQL Server database is requested and
establishes a physical connection by using the System.Data.SqlClient namespace.

For details about methods that you can use with this object, see Methods on page 30.

Creating a Reusable Connection Object

To create a reusable connection object, use the following method:
aaDBAccess.GetConnection (<ConnectionString>, <ProviderType>)

For more information, see Connecting to Databases Other Than SQL Server on page 31, Connecting to Databases
Other Than SQL Server on page 31.

Creating a Unique Connection Object

To create a unique connection object for a specific purpose, use the following method:
aaDBAccess.CreateConnection(<ConnectionString>, <ProviderType>)

Differences Between CreateConnection() and GetConnection()

The CreateConnection() method always creates a new connection object, even for calls with identical connection
strings and even if GetConnection() has already been called with the same connection string.

Multiple calls to GetConnection() with identical —not similar— connection strings return the same connection
object, over and over. If the connection string has never been used in a call to GetConnection(), a new

connection object is created, but subsequent calls with the same connection string return the same connection
object.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 18

A V — VA AVEVA™ SQLData Script Library User Guide
— Chapter 2 — aaDBAccess Object

A call to CreateConnection() followed by a call to GetConnection() with the same connection string returns two
different connection objects. That is, the connection object returned by GetConnection() is never the same as
the connection object that has been returned by CreateConnection().

Note: Because GetConnection() shares the same connection object across multiple scripts, connection pooling is
effectively disabled for a specific connection string. All commands or transactions that run on a shared
connection are routed through a single queue. Therefore, multiple physical connections for a single unique
connection string cannot occur. If you want to use connection pooling, use the CreateConnection() method.

For more information, see Connecting to Databases Other Than SQL Server on page 31, Connecting to Databases
Other Than SQL Server on page 31.

Working with Connections

Supply all connection settings in a single parameter named ConnectionString that follows the documented
Microsoft syntax. For details about Microsoft syntax, follow this link:

http://msdn2.microsoft.com/en-us/library/ms254499.aspx

Note: The parsing of the ConnectionString is not case sensitive.

For authentication, you can use one of the following security modes:
¢ Windows Integrated Security
e Windows Account

e SQL Server Authentication

Windows Integrated Security

Internally, IntegratedSecurity provides the connection by using the credentials of the currently logged on
ArchestrA user.

Specify the following syntax in the connection string:
Integrated Security=True

The keyword Integrated Security=True in the connection string overrides any other authentication control.
If the Integrated Security=True keyword is present, you get Windows User Authentication for the user who
is currently logged on, even if you also include credentials for a different user.

If you want to impersonate another Windows user’s credentials, Integrated Security=True must be omitted
from the connection string.

Windows Account

In the ConnectionString parameter, you must provide the following information: domain, user name and
password. The domain and user name must be specified using the following syntax:
User ID=<Domain>\<UserName>; Password=<pasword>;

The SQLData Script Library takes the following actions:
1. Removes domain, user name, and password from <ConnectionString>.

2. Sets Integrated Security=True in <ConnectionString>.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 19

A V — VA AVEVA™ SQLData Script Library User Guide
— Chapter 2 — aaDBAccess Object

3. Configures the connection manager with the specified domain, user name, and password and then requests
impersonation of this user.

The SQLData Script Library impersonates the user based on the properties that were provided in the connection
string.

SQL Server Authentication

Provide the following information in the ConnectionString;
User ID=<UserName>; Password=<password>;

The SQLData Script Library directly passes <ConnectionString> through to the SQL Server database.

The aaDCM object uses <ConnectionString> as is. There is no need for impersonation.

Methods

You can use the following methods with the aaDBAccess object.

CreateConnection()

Use the CreateConnection() method to request a connection to a SQL Server data source.

Syntax
aaDBConnection.CreateConnection(
string ConnectionString)

Parameters

ConnectionString
A previously formatted connection string or a reference to an attribute in any ArchestrA object.

Remarks

The CreateConnection() method returns a connection object to be used for subsequent SQL requests. Each call
to CreateConnection() returns a unique and different connection object. Each connection object represents a
separate connection that uses the same connection string. This method is best used to provide different
connections for different purposes. For example, when one connection is used to query and another is used to
update the database.

You can check the status of a connection by using the ConnectionState read-only property.
Example

The following example shows a connection string for use with SQL Server. The connection string can also be
stored in an attribute in an Archestra object:

me.ExampleConnectionString

Connecting to Databases Other Than SQL Server

Use the overloaded GetConnection() method to access a data source other than Microsoft SQL Server.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 20

A V — VA AVEVA™ SQLData Script Library User Guide
— Chapter 2 — aaDBAccess Object

Syntax
aaDBConnection.GetConnection(
string ConnectionString,
aaDBConnectionType ConnectionType)

Parameters
Acceptable values for ConnectionType are as follows:
e OLEDB

e Oracle

Note: Use OLEDB to connect to the Microsoft Access data source.

GetCommand()

Use the GetCommand() method to retrieve a reference to an aaDBCommand object created previously with the
same or a different script. Do not create a new aaDBConnection object to access a previously created command
object.

Syntax
aaDBCommand . GetCommand (
string CommandId)

Parameters

commandld
The Id is generated internally by the SQLData Script Library. For details, see Getld() on page 42.

Remarks

If CommandID does not represent a valid ID, GetCommand() returns a null reference.

GetConnection()

Use the GetConnection() method to request a connection to a data source.

Syntax
aaDBConnection.GetConnection(
string ConnectionString)

Parameters

ConnectionString
A previously formatted connection string or valid ArchestrA reference.

Remarks

The GetConnection() method returns a connection object to be used for subsequent SQL Server requests. Each
time that GetConnection() is called with the identical connection string to a previous call, it returns the same
connection object for reuse. This method is best used with a script that runs repeatedly, where a new connection
object for each iteration would constitute a risk of memory leakage.

You cannot assume that a physical connection occurs after requesting a connection to a data source.
Connections are opened only on an as-needed basis to perform an operation. The only time that you can check
connectivity status is immediately after an operation completes.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 21

A V — VA AVEVA™ SQLData Script Library User Guide
— Chapter 2 — aaDBAccess Object

This method immediately provides a connection object to be used for subsequent SQL requests. The first call to
GetConnection() returns a unique connection object for the specified connection string, similar to
CreateConnection().

Subsequent calls to GetConnection() return references to the same connection object. Thus, you can make
multiple calls to reuse the same object.

The connection returned by GetConnection() is never the same object as the one returned by
CreateConnection(). This difference enables you to place GetConnection() calls at the top of a script that run
once per scan without constantly creating connection objects.

Note: Be sure to call Dispose() on connection objects that have been created with this method. The aaDBAccess
SQLData Script Library contains a reference to the objects. Garbage collection cannot be performed on them
until you call Dispose().

You can check the status of the connection by using the ConnectionState read-only property.

Authentication

The following three database authentication methods are supported:
¢ Windows Integrated Security
e Windows Account
e SQL Server Authentication

You must provide a standard connection string that is created from keyword = value pairs separated by
semicolons.

Follow this link for a list of connection string keywords:
http://msdn2.microsoft.com/en-us/library/ms254499.aspx

For Windows Integrated Security specify the following parameter in the connection string:
Integrated Security=true;

For Windows Account authentication, specify a connection string that adheres to the following syntax:
User ID=<domain>\<username>;Password=<password>;

For SQL Server Authentication, specify a connection string that adheres to the following syntax:

User ID=<UserName>;Password=<password>;

Connecting to Databases Other Than SQL Server

Use the overloaded GetConnection() method to access a data source other than Microsoft SQL Server.

Syntax
aaDBConnection.GetConnection(
string ConnectionString,
aaDBConnectionType ConnectionType)

Parameters
Acceptable values for ConnectionType are as follows:
e OLEDB

e QOracle

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 22

A V — VA AVEVA™ SQLData Script Library User Guide
— Chapter 2 — aaDBAccess Object

Note: Use OLEDB to connect to the Microsoft Access data source.

GetDiagnostics()
Use the GetDiagnostics() method to return diagnostic information about all connections in a dataset.

Syntax
void GetDiagnostics()

Remarks

The returned dataset contains multiple tables. The table with index O contains the global diagnostic information.
The remaining tables in the dataset correspond to each DCM connection object. For details about diagnostic
properties, see the SQLData Object Help.

GetTransaction()

Use the GetTransaction() method to obtain a reference to an aaDBTransaction object created previously in the
same or a different script. Do not create a new aaDBConnection object to access a previously created
transaction.

Syntax
aaDBTransaction GetTransaction(
string TransactionID)

Parameters

TransactionID
The ID is generated internally by the SQLData Script Library. See GetID() on page 89.

Remarks

If TransactionlID does not represent a valid ID, GetTransaction() returns a null reference.

LogDiagnostics()

Use the LogDiagnostics() method to create a snapshot of all diagnostics available for a connection to be dumped
to the logger. For details about diagnostic properties, see the SQLData Object Help.

Syntax
void LogDiagnostics()

RemoveCommand()

Use the RemoveCommand() method to instruct the SQLData Script Library to remove internal references to the
aaDBCommand object referenced by CommandID, release all resources used by the object, and clean up all
references to the object in memory.

Syntax
void RemoveCommand (
string CommandID)

Parameters

CommandID
The unique ID, generated internally by the SQLData Script Library. For details, see Getld() on page 42.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 23

A V — VA AVEVA™ SQLData Script Library User Guide
— Chapter 2 — aaDBAccess Object

Remarks

You must call RemoveCommand() if you previously requested CommandID. Otherwise, the memory cannot be
released until the engine process is shut down.

Do not keep this command object in memory, especially when it is associated with a large dataset.

RemoveTransaction()

Use the RemoveTransaction() method to instruct the SQLData Script Library to remove all references to the
aaDBTransaction object referred to by TransactionID, release all resources used by the object, and clean up all
references to the object in memory.

Syntax
void RemoveTransaction(
string TransactionID)

Parameters

TransactionlD
The unique ID, generated internally by the SQLData Script Library. See aaDBTransaction.GetID() on page 89.

Remarks

Internally, the SQLData Script Library ensures that all aaDBCommand objects explicitly added to this object are
removed.

You must call this method if you previously requested the transaction ID. Otherwise, the memory cannot be
released until the engine process is shut down.

Do not keep this command object in memory, especially when it is associated with a large dataset.

ResetDiagnostics

Use the ResetDiagnostics() method to reset the current diagnostic values associated with the
DCMConnectionMgr and all DCMConnections.

Syntax
void ResetDiagnostics()

Shutdown()

Use the Shutdown() method to gracefully cancel outstanding command object requests and release references
to all persisted aaDBCommand and aaDBTransaction objects.

Call this method just once from a shutdown script in the hosting engine.

Syntax
void Shutdown()

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 24

AV=VA

Chapter 3

aaDBCommand Object

About aaDBCommand Object

Use objects of type aaDBCommand to process SQL statements and stored procedures or to access a single table
or view.

Create instances of type aaDBCommand by calling CreateCommand() on an instance of the aaDBConnection
object. For example, assuming that the aaDBConnection instance is called Connection:
Connection.CreateCommand()

When a script requests the command object ID, the command object is flagged to be persisted.

The aaDBCommand objects are persisted across scripts and scan cycles but not across failover or shutdown.

Note: You must call Dispose() on each instance of aaDBCommand where an ID was created. You can also call
aaDBAccess.RemoveCommand() with the ID.

You can retrieve an aaDBCommand object at any time by calling the static method aaDBAccess.GetCommand()
and passing the previously acquired string ID.

The aaDBCommand object provides support for types that make sense for QuickScript. Other types may be
supported by database columns, such as large text files or generic binary large objects (BLOBs), but a script might
not be able to generate or analyze them. In general, if the script cannot manipulate objects of a particular type,
such as a BLOB of type char[] or byte[], it might still be possible to read or write an object of that type to or from
some alternate script library while storing it as type object within the script. In these cases, the object may be
blindly written to a database using SetCurrentRowColumnByName() or SetCurrentRowColumnBylindex() and
may be blindly read from a database using GetCurrentRowColumnByName() or
GetCurrentRowCollumnBylindex().

The life cycle of the aaDBCommand object follows this pattern:
1. The object is created by calling the aaDBConnection.CreateCommand() method.
2. Parameters are added to the command object as necessary.
3. The command object is run synchronously or asynchronously.
4

. The dataset object wrapped by the aaDBCommand object is accessed and manipulated. This process may
involve writing the dataset object back to the database.

5. Steps 2 through 4 can be repeated as needed.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 25

A V — VA AVEVA™ SQLData Script Library User Guide
— Chapter 3 —aaDBCommand Object

Methods

You can use the following methods with the aaDBCommand object.

AddRow()

Use the AddRow() method to add an empty row to a memory table and make it current.
You can then add values to the row by using the following methods:

¢ SetCurrentRowColumnByindex()

¢ SetCurrentRowColumnByName()

¢ SetCurrentRow()

Syntax
result AddRow()

Remarks

The actual update to the data source is delayed until you call SaveChangesSync() or SaveChangesAsync().

DeleteCurrentRow()

Use the DeleteCurrentRow() method to mark the currently selected row for deletion. The current row is not
deleted from the data source until you call SaveChangesSync() or SaveChangesAsync().

Syntax
result DeleteCurrentRow()

Dispose()

Use the Dispose() method to instruct the SQLData Script Library to free all memory resources associated with
the command object. If the command is running, Dispose() cancels it. It is preferred to cancel the command
before calling Dispose().

Syntax
Void Dispose()

Remarks
After Dispose() is called, subsequent method calls to the command fail.
If an ID has been retrieved for this command object, you must call Dispose() or aaDBAccess.RemoveCommand().

If you requested the ID of this command object, it is very important that you call Dispose() so it can flag the
SQLData Script Library to clear all the references to this object.

When you request a dataset it is very important for you to call the Dispose() method when you are no longer
interested in the results of a specific command object.

If you have made changes to the memory dataset such as updating, deleting, or adding, but did not issue
SaveChangesSync() or SaveChangesAsync(), all changes are discarded.

Subsequent method calls to request scrolling or to modify the memory dataset fail and return either a null
object or error code 1016.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 26

A V — VA AVEVA™ SQLData Script Library User Guide
— Chapter 3 —aaDBCommand Object

ExecuteAsync()

Use the ExecuteAsync() method to queue a command object in the connection for later processing.
ExecuteAsync() returns immediately, and processing occurs in the background.

Syntax
result ExecuteAsync()

Remarks
You can check for status by reading the ExecutionState read-only property.

After ExecuteAsync() is processed, you can still obtain a reference to the command objects and analyze their
ExecutionState and LastError properties.

To free all resources allocated for the command object, you must call Dispose().

ExecuteAsyncCancel()

Use the ExecuteAsyncCancel() asynchronous method to cancel the operations of a running command. If the
command has already started running, it may run to completion. If the command is queued while waiting for
other commands, it is removed from the queue without running.

Syntax
result ExecuteAsyncCancel()

Remarks
To check for status, you can request the ExecutionState read-only property.

After the method has successfully completed, the command object is canceled.

ExecuteSync()

Use the ExecuteSync() method to run the command object. This method runs synchronously and blocks the
engine thread.

Syntax
result ExecuteSync()

Remarks
Use the ExecutionState and LastExecutionError properties to check for status of this method.

After ExecuteSync() is processed you can still obtain a reference to the command object and analyze its
ExecutionState and LastError properties.

Use the LastExecutionError property to check if the command failed or succeeded (success is indicated by a
blank string), since ExecuteSync() may return 0 in the case of a failure instead of an error message.

To free all resources allocated for the command object, you must call Dispose().

GetCurrentRowColumnByIndex()

Use the GetCurrentRowColumnByindex() method to obtain a specific column value from the current row. Use
this method to read a single column value. For more information, see SelectRow() on page 45.

You must provide a zero-based column index.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 27

A V — VA AVEVA™ SQLData Script Library User Guide
— Chapter 3 —aaDBCommand Object

Syntax
object GetCurrentRowColumnByIndex(
int ColumnNumber)

Parameters

ColumnNumber
Zero-based index to the table column.

Return Value

The object returned on failure is Null. The requested index is either negative, larger than the number of columns,
or there is no valid current row.

GetCurrentRowColumnByName()

Use the GetCurrentRowColumnByName() method to obtain a specific column value from the current row by
column name. Use this method to read a single column value. For more information, see SelectRow() on

page 45.

You must provide a column name.

Syntax
object GetCurrentRowColumnByName(
string ColumnName)

Parameters

ColumnName
Column name.

GetDataSet()

Use the GetDataSet() method to retrieve the dataset stored in memory that was generated when the command
object finished processing.

Syntax
DataSet GetDataset()

Remarks

It is not recommended that you use this method under normal conditions, because the actual dataset may
contain large amount of data (huge number of rows). This method is provided for advanced users that want to
directly use the SQLClient namespace to interact with the dataset.

Note: If you execute this method in a synchronous script with a large number of rows, the script may time out. If
you plan to use this method, it is recommended that you configure the script to run asynchronously.

ArchestrA QuickScript uses 1-based indexing when square-bracket notation is used with numeric indexes, such as
DataSet.Tables[7].

To avoid confusion, use square-bracket notation with collections that support strong name indexing, such as
DataSet.Tables["Customers"]. You can also bypass the dataset object by using the wrapping accessor functions
described in the next sections.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 28

A V — VA AVEVA™ SQLData Script Library User Guide
— Chapter 3 —aaDBCommand Object

Getld()

Use the GetID() method to retrieve the ID of an aaDBCommand object instance for use in a different script or
scan. The SQLData Script Library generates a unique command object ID, which remains unique across all scripts
on the engine.

Syntax
string GetId()

Return Value
On failure, this method returns the value Null.
Remarks

The SQLData Script Library returns a string value, but the script engine automatically attempts to cast this value
to other types. If the script assigns the returned ID to any type other than string, the ID is corrupted and does
not work in future GetCommand(ID) calls.

GetParameterBylndex()

Use the GetParameterBylndex() method to retrieve output or to return parameters after the command object
has been processed. If the parameter cannot be evaluated, the returned value is null.

Syntax
object GetParameterByIndex(
int Index)

Parameters

Index
1-based parameter index.

Remarks

You must provide a one-based parameter index.

Note: Use this method only for parameters defined in an OLEDB-type query, as specified by the connection
object. If the connection type is not OleDb, null is returned.

GetParameterByName()

Use the GetParameterByName() method to retrieve output or return parameters after the command object has
been processed. If the parameter cannot be evaluated, the returned value is null.

You must provide a parameter name.

Syntax
object GetParameterByName(
string ParameterName)

Parameters

ParameterName
Parameter name.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 29

_AV — VA AVEVA™ SQLData Script Library User Guide
— Chapter 3 —aaDBCommand Object

Remarks

It is not considered an error if the ResultSet returned from a query contains no rows. Zero-row results can also
be expected as results of queries that contain parameters, so this might be an expected result, depending on the
purpose of the query.

Note: Use this method only for parameters defined in a non-OLEDB-type query, as specified by the connection
object. If the connection type is not OleDb, null is returned.

GetRow()

Use the GetRow() method to quickly scroll through the records in the memory table and examine the row values
and determine an index to be used for selecting a row of interest. For more information, see SelectRow() on

page 45.

You must provide a zero-based row index.

Syntax
aaDBRow GetRow(
int RowNum)

Parameters

RowNum
A zero-based row index less than the row count in the memory dataset.

Remarks
This method executes synchronously.
The aaDBRow returned object has two members:
¢ columnNames: An array filled with column names.
¢ columnValues: An array filled with column values corresponding to the row index.
The array items must be converted to strings before you can use them in string manipulation.

After the command object is successfully run you can use the columnValues array to set ArchestrA attributes.

Note: Before setting ArchestrA attributes you may need to cast the individual items from the columnValues array.

SaveChangesAsync()

Use the SaveChangesAsync() method to instruct the SQLData Script Library to write back to the data source all
changes made to the memory dataset. The dataset must have been acquired by calling ExecuteAsync() or
ExecuteSync().

Syntax
result SaveChangesAsync()

Remarks

This method runs asynchronously. The request for updating the data source is queued and the method
completes immediately.

You must check for status by getting the ExecutionState property value.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 30

A V — VA AVEVA™ SQLData Script Library User Guide
— Chapter 3 —aaDBCommand Object

SaveChangesSync()
This method is similar to SaveChangesAsync() except that it runs synchronously.

Syntax
result SaveChangesSync()

Remarks
This method blocks the engine thread when the script itself is synchronous.
It is highly recommended that you use this method only in asynchronous scripts.

When you configure the asynchronous script, make sure that the TimeoutLimit value is large enough to
accommodate the time that this method may take to run the command object.

SelectRow()

Use the SelectRow() method to select the row with the index rowNumber in the memory table.

Syntax
result SelectRow(
long RowNumber)

Parameters

RowNum
The zero-based index of the record in the memory table.

Remarks
After you select a row, you can then read, delete or update the row using the following methods:
¢ GetCurrentRowColumnBylindex()

¢ GetCurrentRow(C()

SetCurrentRowColumnBylndex()

SetCurrentRowColumnByName()

SetCurrentRow()

SelectTable()

Use the SelectTable() method to select the table with the index Tablelndex in the memory dataset.
You can then read, delete, or update this DataTable.

Syntax
result SelectTable(
long RowNumber)

Parameters

TableNumber
A zero-based index of the table in the memory dataset.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 31

A V — VA AVEVA™ SQLData Script Library User Guide
— Chapter 3 —aaDBCommand Object

Remarks

By default, immediately after a command object returns a non- empty dataset that runs successfully the table
with index 0 is selected.

SetCurrentRow()

Use the SetCurrentRow() method to set values for multiple columns at the same time. You must provide the
column names to set and the corresponding values to be set, respectively, in the following two members of the
Row parameter:

¢ columnNames
¢ columnValues

Syntax
result SetCurrentRow (
aaDBRow Row)

Parameters

Row
You can construct two ArrayList objects by using string constants or valid Archestra reference strings.

Remarks

When you construct the input ArrayList object, you can specify constants as well as valid ArchestrA reference
strings.

Necessary conversions are performed internally to cast values to the specific column type.
The actual update to the data source is delayed until you call SaveChangesSync() or SaveChangesAsync().

If SetCurrentRow() encounters a failure to change a column, some columns may have already been changed in
the internal dataset. In this case, the internal dataset reverts to the state it had immediately after the last update
or SaveChanges() call. It is possible that this reversion of the internal dataset could undo changes applied prior
to the current SetCurrentRow() call. For instance, if the script has a loop to modify 10 rows with
SetCurrentRow() and nine rows return without a bad error code but the tenth row returns a bad error code, the
internal dataset reverts to its state before the first SetCurrentRow() call.

Example

Dim inputCol as System.Collections.Arraylist;
Dim inputVal as System.Collections.Arraylist;
Dim inputRow as aaDBClient.aaDBRow;

inputCol = new System.Collections.ArrayList();
inputCol.Add("Name");
inputCol.Add("Description™);
inputCol.Add("DateTime");

inputVal = new System.Collections.ArraylList();
inputVal.Add("Name");
inputVal.Add(me.strValue);
inputVal.Add(me.DT);

inputRow.columnNames = inputCol;
inputRow.columnValues = inputVal;

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 32

A V — VA AVEVA™ SQLData Script Library User Guide
— Chapter 3 —aaDBCommand Object

SetCurrentRowColumnByIndex()

Use the SetCurrentRowColumnByindex() method to update the column at index columnNumber in the currently
selected row.

Syntax

result SetCurrentRowColumnByIndex (
int ColumnNumber,

object NewValue)

Parameters

ColumnNumber
The zero-based index of the column in the memory table.

NewValue
You can specify a constant or a valid ArchestrA reference string. Both relative references and fully qualified
references are supported. For example:

e me.ShortDesc — relative reference
¢ UD1.status — fully qualified reference string
e "John Smith" — constant
Remarks
Necessary conversions are performed internally to cast newValue to the column type.

When you try to change a value using this method and the type passed in does not match the type specified for
the column in the database table, one of the following outcomes occurs:

¢ The value is written with an automated type conversion
¢ The transaction fails completely because the conversion would result in loss of data.

The actual update to the data source is delayed until you call SaveChangesSync() or SaveChangesAsync().

SetCurrentRowColumnByName()

Use the SetCurrentRowColumnByName() method to update the column named ColumnName in the currently
selected row.

Syntax

result SetCurrentRowColumnByName (
string ColumnName,

object NewValue)

Parameters

ColumnName
String constant that is enclosed in quotation marks or another ArchestrA reference that can evaluate to a
string. For example:
"LastName" — Spaces are allowed.
For more details see SQL Server documentation regarding column naming rules.

NewValue

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 33

A V — VA AVEVA™ SQLData Script Library User Guide

Chapter 3 —aaDBCommand Object

You can specify a constant or a valid ArchestrA reference string. Both relative references and fully qualified
references are supported. For example:

e me.ShortDesc — relative reference
¢ UD1.status — fully qualified reference string
e "John Smith" — constant
Remarks
Necessary conversions are performed internally to cast newValue to the column type.

When you try to change a value using this method and the type passed in does not match the type specified for
the column in the database table, one of the following outcomes occurs:

¢ The value is written with an automated type conversion
¢ The transaction fails completely because the conversion would result in loss of data.

The actual update to the data source is delayed until you call SaveChangesSync() or SaveChangesAsync().

SetParam Type Methods for SQL Server and Oracle

Frequently, the SQL statement that you use to create a command has parameters encoded in it. In such cases,
you must set values for all parameters needed as input by the SQL statement before you run the command.

For SQL Server databases, parameters are indicated by @<ParameterName> so that each parameter is named.
The following method call accommodates named parameters:
Set<Type>ParameterByName()

You must use the version of the method that matches the way that you created your connection object. When
you create a connection object with aaDBConnectionTypeOleDb, you must use the method
Set<Type>ParameterBylndex(). For all other connections, use the method Set<Type>ParameterByName().

Parameters are usually mapped to a table column, which always has a specific type. The method properties that
you must supply with each of the methods in this subsection depend on the column type that they map to.

Separate methods are necessary because different column types require that you specify different method
parameters.

For example, a column of type NVarChar requires a length be specified while a column type of Decimal requires
precision and scale.

The method parameters that are common across all methods are:

e Parameter Name (parameterName)

e Parameter Value (parameterValue)
You can specify null for parameterValue when the Parameter Direction is Output or ReturnValue.
Parameter Direction (parameterDirection) enumerated values are:

e Input

e |nputOutput

e QOutput

e ReturnValue

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 34

A V — VA AVEVA™ SQLData Script Library User Guide
— Chapter 3 —aaDBCommand Object

Output Parameters

The GetParameterBylndex() and GetParameterByName() methods return values to the script through
InputOutput, Output, or ReturnValue parameters.

It is not possible to return values directly to ArchestrA attributes through InputOutput, Output or ReturnValue
parameters, only DIM script variables. This is a constraint of the scripting infrastructure implemented in
Application Server version 3.0.

If you want the value returned by GetParameterBylndex() or GetParameterByName() to set a value to an
ArchestrA attribute reference, perform the following steps:

1. Declare a local script variable and return the InputOutput, Output, or ReturnValue parameter by making a
GetParameterBylndex() or GetParameterByName() method call.

2. Use this local variable to set the desired ArchestrA reference.

SetBitParameterByName()

Note: Do not use this method for the Oracle data type Boolean value. Use SetintParameterByName instead.

Use the SetBitParameterByName() method to configure a bit parameter by the name encoded into the text of a
SQL statement using the @ character.

Syntax

result SetBitParameterByName (

string ParameterName,

object ParameterValue,
aaDBParameterDirection ParameterDirection)

Parameters

ParameterName
String identifier used in the SQL statement.
In the following SQL statement the parameter name is boolValue.
"SELECT StateProvinceID
,StateProvinceCode
,CountryRegionCode
,IsOnlyStateProvinceFlag
,Name
,TerritoryID
,rowguid
,ModifiedDate
FROM AdventureWorks.Person.StateProvince
WHERE IsOnlyStateProvinceFlag = @boolValue"
ParameterValue
A discrete value or a valid ArchestrA reference string. For example:

e 0
o false
e me.boolValue

Example
SetBitParameterByName ("boolValue", me.boolValue, aaDBParameterDirection.Input)

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 35

A V — VA AVEVA™ SQLData Script Library User Guide
— Chapter 3 —aaDBCommand Object

SetCharParameterByName()

Use the SetCharParameterByName() method to configure a character string parameter by the name encoded
into the text of a SQL statement using the @ character.

Syntax

result SetCharParameterByName (

string ParameterName,

object ParameterValue,
aaDBParameterDirection ParameterDirection,
int Length)

Parameters

ParameterName
The string identifier that is used in the SQL statement.
In the following SQL statement the input parameter is "lastName."
"SELECT * FROM Person.Contact WHERE (LastName = @lastName)"

ParameterValue
A string constant or valid ArchestrA reference string. For example:

e "Smith"
e me.LastName
¢ null - Output and ReturnValue parameters.

ParameterDirection
For possible values, see aaDBParameterDirection on page 71.

Length
Specifies the maximum length of the parameter.
If the length of the parameterValue is greater, the parameterValue is truncated to the specified length.

Example
SetCharParameterByName ("lastName", "Smith",aaDBParameterDirection.Input, 50)

SetDecimalParameterByName()

Use the SetDecimalParameterByName() method to configure a decimal parameter by the name encoded into
the text of a SQL statement using the @ character.

Syntax

result SetDecimalParameterByName (

string ParameterName,

object ParameterValue,
aaDBParameterDirection ParameterDirection,
short Precision,

short Scale)

Parameters

ParameterName
The string identifier used in the SQL statement.
In the following SQL statement the name of the parameter is "RejectedQuantity".
"INSERT INTO Purchasing.PurchaseOrderDetail

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 36

A V — VA AVEVA™ SQLData Script Library User Guide

Chapter 3 —aaDBCommand Object

(PurchaseOrderID
,DueDate
,OrderQty
,ProductID
,UnitPrice
,ReceivedQty
,RejectedQty
,ModifiedDate)
VALUES
(4,'2008-01-28',4,4,4,12.89,@RejectedQuantity,
'2008-01-28"') "

ParameterValue
This parameter supports float, double or string values.
You can also specify a valid ArchestrA reference string. For example:

e 123.333
e "123.333333333333333333"
¢ me.Quantity

ParameterDirection
For possible values, see aaDBParameterDirection on page 71.

Precision
A number that indicates the total number of digits.

Scale
A number that indicates the number of digits to the right of the decimal point.

Example

SetDecimalParameterByName ("RejectedQuantity", me.Quantity,aaDBParameterDirection.Input, 8, 2)

SetDateTimeParameterByName()

Use the SetDateTimeParameterByName() method to configure a DateTime parameter by the name encoded
into the text of a SQL statement using the @ character.

Syntax

result SetDateTimeParameterByName (

string ParameterName,

object ParameterValue,
aaDBParameterDirection ParameterDirection)

Parameters

ParameterName
The string identifier used in the SQL statement. For example, in the following SQL statement, the name of
the parameter is "NewDate"
"INSERT INTO Purchasing.PurchaseOrderDetail
(PurchaseOrderID
,DueDate
,OrderQty
,ProductID
,UnitPrice

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 37

A V — VA AVEVA™ SQLData Script Library User Guide
— Chapter 3 —aaDBCommand Object

,ReceivedQty

,RejectedQty

,ModifiedDate)

VALUES
(4,'2008-01-28',4,4,4,12.89,12.56,@NewDate)"

ParameterValue
The DateTime, string value, or a valid ArchestrA reference string.
For example:

e '2004-03-1110:17:21.587"
e me.dtValue

ParameterDirection
For possible values, see aaDBParameterDirection on page 71.

Example

SetDateTimeParameterByName ("NewDate",me.dtValue,aaDBParameterDirection.Input)

SetDoubleParameterByName()

Use the SetDoubleParameterByName() method to configure a double parameter by the name encoded into the
text of a SQL statement using the @ character.

Syntax

result SetDoubleParameterByName (

string ParameterName,

object ParameterValue,
aaDBParameterDirection ParameterDirection)

Parameters

ParameterName
The string identifier used in the SQL statement.
In the following SQL statement the output parameter name is "AvgReject"
"SELECT @AvgReject = Avg(RejectedQty)
FROM Purchasing.PurchaseOrderDetail "

ParameterValue
A double-precision floating number or a valid ArchestrA reference string. For example:

e 123.333
e me.Limit

ParameterDirection
For possible values, see aaDBParameterDirection on page 71.

Example
SetDoubleParameterByName ("AvgReject",null,aaDBParameterDirection.Output)

SetFloatParameterByName()

Use the SetFloatParameterByName() method to configure a float parameter by the name encoded into the text
of a SQL statement using the @ character.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 38

A V — VA AVEVA™ SQLData Script Library User Guide

Chapter 3 —aaDBCommand Object

Syntax

result SetFloatParameterByName (

string ParameterName,

object ParameterValue,
aaDBParameterDirection ParameterDirection

Parameters

ParameterName
String identifier used in the SQL statement.
In the following SQL statement the name of the output parameter is "AvgReject."
"SELECT @AvgReject = Avg(RejectedQty)
FROM Purchasing.PurchaseOrderDetail "

ParameterValue
A floating number or a valid ArchestrA reference string. For example:

e 123.333
e me.Limit

ParameterDirection
For possible values, see aaDBParameterDirection on page 71.

Example
SetFloatParameterByName ("AvgReject", null, aaDBParameterDirection.Output)

SetIntParameterByName()

Use the SetintParameterByName() method to configure an integer parameter by the name encoded into the
text of a SQL statement using the @ character.

Note: Use this method for the Oracle data type Boolean.lt is specific to Oracle.

Syntax

result SetIntParameterByName (

string ParameterName,

object ParameterValue,
aaDBParameterDirection ParameterDirection)

Parameters

ParameterName
The string identifier that is used in the SQL statement.
In the following SQL statement the name of the output parameter is "Cnt"
"SELECT @Cnt=Count (*)(RejectedQty)
FROM Person.Contact "

ParameterValue
An integer value or a valid ArchestrA reference string. For example:

e 10
e me.OrderCount
¢ Null - Output

ParameterDirection

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 39

A V — VA AVEVA™ SQLData Script Library User Guide
— Chapter 3 —aaDBCommand Object

For possible values, see aaDBParameterDirection on page 71.

Example
SetIntParameterByName ("Cnt", null, aaDBParameterDirection.Output)

SetLongParameterByName()

Use the SetLongParameterByName() method to configure a long parameter by the name encoded into the text
of a SQL statement using the @ character.

Syntax

result SetLongParameterByName (

string ParameterName,

object ParameterValue,
aaDBParameterDirection ParameterDirection)

Parameters

ParameterName
The string identifier that is used in the SQL statement.
In the following SQL statement the name of the output parameter is "ProdID"
"SELECT ProductID, SUM(WorkOrderID)
AS OrderCnt
FROM Production.WorkOrder
WHERE ProductID = @ProdID
GROUP BY ProductID"

ParameterValue
An integer value or a valid ArchestrA reference string. For example:

e 10
e me.ProductiD
¢ Null - Output

ParameterDirection
For possible values, see aaDBParameterDirection on page 71.

Example
SetLongParameterByName ("ProdID",me.ProductID,aaDBParameterDirection.Output)

SetParam Type Methods for OLEDB

Frequently, the SQL statement that you use to create a command has parameters encoded in it. In such cases,
you must set values for all parameters needed as input by the SQL statement before you run the command.

For data providers accessed through OLEDB, parameters are indicated by identical placeholder characters, and
parameters must be indicated by index. The method call Set<Type>ParameterBylndex() accommodates the
indexed parameters of OLEDB.

Parameters are usually mapped to a table column, which always has a specific type. The method parameters that
you supply with each of the methods in this subsection vary depending on the column type that they map to.

Note: Because parameters are sequentially numbered, it is important that there be no gaps in the sequence. The
sequence is checked when the command object with parameters is executed. Gaps cause the command object
to fail.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 40

A V — VA AVEVA™ SQLData Script Library User Guide
— Chapter 3 —aaDBCommand Object

It is necessary to have separate methods because different column types require that you specify different
method parameters.

For example a column of type NVarChar requires that you specify a length, while a column type of Decimal
requires that you specify precision and scale.

The following method parameters are common across all methods:
¢ Parameter Index (Index) — this is 1-based
¢ Parameter Value (parameterValue)
You can specify null for parameterValue when the parameterDirection is Output or ReturnValue.
¢ Parameter Direction (parameterDirection)
The following are enumerated values:
e |nput
e |nputOutput
e QOutput

e ReturnValue

SetBitParameterByIndex()

Use the SetBitParameterBylndex() method to configure a bit parameter as encoded into the text of an OLEDB
SQL statement.

Syntax

result SetBitParameterByIndex (

int Index,

object ParameterValue,
aaDBParameterDirection ParameterDirection)

Parameters

Index
The sequential index of the parameter as used in the SQL statement.
In the following SQL statement, the parameter corresponds to the question mark (?) character:
"SELECT StateProvinceID
,StateProvinceCode
,CountryRegionCode
,IsOnlyStateProvinceFlag
,Name
,TerritoryID
,rowguid
,ModifiedDate
FROM AdventureWorks.Person.StateProvince
WHERE IsOnlyStateProvinceFlag = ?"

ParameterValue
A discrete value or a valid ArchestrA reference string. For example:

e 0.

o false.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 41

A V — VA AVEVA™ SQLData Script Library User Guide
— Chapter 3 —aaDBCommand Object

¢ me.boolValue.

¢ ParameterDirection. For possible values, see aaDBParameterDirection on page 71.

Example
SetBitParameterByIndex (@, me.boolValue, aaDBParameterDirection.Input)

SetCharParameterBylIndex()

Use the SetCharParameterBylndex() method to configure a character string parameter as encoded into the text
of an OLEDB SQL statement.

Syntax

result SetCharParameterByIndex (

int Index,

string ParameterValue,
aaDBParameterDirection ParameterDirection,
int Length)

Parameters

Index
The sequential index of the parameter as used in the SQL statement.
In the following SQL statement the input parameter corresponds to the question mark (?) character.
"SELECT * FROM Person.Contact WHERE (LastName > ?)"

ParameterValue
A string constant or valid ArchestrA reference string. For example:

e "Smith"
e me.LastName
¢ null - Output and ReturnValue parameters

ParameterDirection
For possible values, see aaDBParameterDirection on page 71.

Length
The maximum length of the parameter.
If the length of the parameterValue is greater, the parameterValue is truncated to the specified length.

Example
SetCharParameterByIndex (@, "Smith",aaDBParameterDirection.Input, 50)

SetDateTimeParameterBylndex()

Use the SetDateTimeParameterBylndex() method to configure a DateTime parameter as encoded into the text
of an OLEDB SQL statement.

Syntax

result SetDateTimeParameterByIndex (

int Index,

object ParameterValue,
aaDBParameterDirection Parameterdirection)

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 42

A V — VA AVEVA™ SQLData Script Library User Guide

Chapter 3 —aaDBCommand Object

Parameters

Index
The sequential index of the parameter as used in the SQL statement. For example:
In the following SQL statement the parameter corresponds to the question mark (?) character:
"INSERT INTO Purchasing.PurchaseOrderDetail
(PurchaseOrderID
,DueDate
,OrderQty
,ProductID
,UnitPrice
,ReceivedQty
,RejectedQty
,ModifiedDate)
VALUES
(4,'2008-01-28',4,4,4,12.89,12.56,?)"

ParameterValue
DateTime, string value, or a valid ArchestrA reference string.
For example:

e '2004-03-1110:17:21.587"
e me.dtValue

ParameterDirection
For possible values, see aaDBParameterDirection on page 71.

Example
SetDateTimeParameterByIndex (1, me.dtValue, aaDBParameterDirection.Input)

SetDecimalParameterBylndex()

Use the SetDecimalParameterBylndex() method to configure a decimal parameter as encoded into the text of an
OLEDB SQL statement.

Syntax

result SetDecimalParameterByIndex (

int Index,

object ParameterValue,
aaDBParameterDirection ParameterDirection,
short Precision,

short Scale)

Parameters

Index
Sequential index of the parameter as used in the SQL statement. For example:
In the following SQL statement the parameter corresponds to the question mark (?) character:
"INSERT INTO Purchasing.PurchaseOrderDetail
(PurchaseOrderID
,DueDate
,OrderQty
,ProductID
,UnitPrice
,ReceivedQty

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 43

A V — VA AVEVA™ SQLData Script Library User Guide
— Chapter 3 —aaDBCommand Object

,RejectedQty
,ModifiedDate)
VALUES
(4,'2008-01-28',4,4,4,12.89,?, '2008-01-28") "

ParameterValue
This parameter supports float, double, or string values.
You can also specify a valid ArchestrA reference string. For example:

e 123.333
e "123.333333333333333333"
¢ me.Quantity

ParameterDirection
For possible values, see aaDBParameterDirection on page 71.

Precision
A number that indicates the total number of digits.

Scale
A number that indicates the number of digits to the right of the decimal point.

Example
SetDecimalParameterByIndex (1, me.Quantity,aaDBParameterDirection.Input, 8, 2)

SetDoubleParameterByIndex()

Use the SetDoubleParameterBylndex() method to configure a double parameter as encoded into the text of an
OLEDB SQL statement.

Syntax

result SetDoubleParameterByIndex (

int Index,

object ParameterValue,
aaDBParameterDirection ParameterDirection)

Parameters

Index
The sequential index of the parameter as used in the SQL statement.
In the following SQL statement, the output parameter corresponds to the question mark (?) character:
"SELECT ? = Avg(RejectedQty)
FROM Purchasing.PurchaseOrderDetail "

ParameterValue
A double-precision floating number or a valid ArchestrA reference string. For example:

e 123.333
e me.Limit

ParameterDirection
For possible values, see aaDBParameterDirection on page 71.

Example
SetDoubleParameterByIndex (1, null, aaDBParameterDirection.Output)

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 44

A V — VA AVEVA™ SQLData Script Library User Guide
— Chapter 3 —aaDBCommand Object

SetFloatParameterByIndex()

Use the SetFloatParameterBylndex() method to configure a float parameter as encoded into the text of an
OLEDB SQL statement.

Syntax

result SetFloatParameterByIndex (

int Index,

object ParameterValue,
aaDBParameterDirection ParameterDirection)

Parameters

Index
The sequential index of the parameter as used in the SQL statement.
In the following SQL statement the output parameter corresponds to the question mark (?) character:
"SELECT ? = Avg(RejectedQty)
FROM Purchasing.PurchaseOrderDetail "

ParameterValue
A double-precision floating number or a valid ArchestrA reference string. For example:

e 123.333
e me.Limit

ParameterDirection
For possible values, see aaDBParameterDirection on page 71.

Example
SetFloatParameterByIndex (1, null, aaDBParameterDirection.Output)

SetIntParameterByIndex()

Use the SetintParameterBylndex() method to configure a integer parameter as encoded into the text of an
OLEDB SQL statement.

Syntax

result SetIntParameterByIndex (

int Index,

object ParameterValue,
aaDBParameterDirection ParameterDirection)

Parameters

Index
The sequential index of the parameter as used in the SQL statement.
In the following SQL statement the output parameter corresponds to the question mark (?) character.:
"SELECT ? = Avg(RejectedQty)
FROM Purchasing.PurchaseOrderDetail "

ParameterValue
A double-precision floating number or a valid ArchestrA reference string. For example:

e 123.333

e me.Limit

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 45

A V — VA AVEVA™ SQLData Script Library User Guide
— Chapter 3 —aaDBCommand Object

ParameterDirection
For possible values, see aaDBParameterDirection on page 71.

Example
SetIntParameterByIndex (1, null, aaDBParameterDirection.Output)

SetLongParameterByIndex()

Use the SetLongParameterBylndex() method to configure a long parameter as encoded into the text of an
OLEDB SQL statement.

Syntax

result SetLongParameterByIndex (

int Index,

object ParameterValue,
aaDBParameterDirection ParameterDirection)

Parameters

Index
The sequential index of the parameter as used in the SQL statement.
In the following SQL statement the output parameter corresponds to the question mark (?) character:
" SELECT ProductID, SUM(WorkOrderID) AS OrderCnt
FROM Production.WorkOrder
WHERE ProductID = ?
GROUP BY ProductID"

ParameterValue
A double-precision floating number or a valid ArchestrA reference string. For example:

e 123.333
e me.ProductiD

ParameterDirection
For possible values, see aaDBParameterDirection on page 71.

Example
SetLongParameterByIndex (1, me.ProductID, aaDBParameterDirection.Output)

Properties

You can use the following properties with the aaDBCommand object.

CommandTimeout

This property accesses the underlying CommandTimeout property of the DCM command object. The DCM
command object in turn, accesses the ADO.NetDbCommand.CommandTimeout property. According to MSDN,
this CommandTimeout property gets or sets the wait time before terminating the attempt to run a command
object and generating an error.

Notes:

¢ |f the DCM command object has been removed or is otherwise invalid, reading this property returns 0;
writing it has no effect. An exception is not thrown.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 46

A V — VA AVEVA™ SQLData Script Library User Guide

Chapter 3 —aaDBCommand Object

¢ When aaDBConnectionType=0racle, this property is not supported. Setting a command object timeout has
no effect, and the value returned is always 0.

CurrentRowNumber

This read-only property returns the row value most recently set by the last call to SelectRow() or the new row
number that has been created if AddRow() has been called since SelectRow().

This property returns a value of -1 if any of the following conditions occurred:
¢ A call to SelectRow() was not made.
¢ Aninvalid row number was passed in the last call to SelectRow().
¢ DeleteCurrentRow() was called.

Syntax
long CurrentRowNumber;

CurrentTableNumber

This read-only property returns the table index most recently set by the last call to SelectTable().

This property returns 0 by default immediately after a command object (returning a dataset that is not empty) is
run successfully.

This property returns -1 if any of the following conditions occurred:
¢ Aninvalid index was passed in the last call to SelectTable()
¢ The resulting dataset is empty
Syntax
long CurrentTableNumber;
Disposed

This read-only property returns a Boolean value that indicates whether the command object has been disposed.
If disposed, the command object can no longer be used.

ExecutionState

This read-only property returns the execution state of a SQL command. Because command processing can be

asynchronous, you must determine whether the command has been processed before you request the execution
state.

Syntax
aaDBCommandState.ExecutionState

LastExecutionError

This property returns the last error, if any, that is the error string generated by the provider.
Use this property in conjunction with the ExecutionState property.

The LasExecutionError property returns the error generated by the provider for the failed command object.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 47

A V — VA AVEVA™ SQLData Script Library User Guide

Chapter 3 —aaDBCommand Object

Syntax
string LastExecutionError

RowCount

Use this read-only property to obtain the number of records in the memory dataset that was retrieved by a SQL
command. When it is used with a SQL action command such as INSERT, DELETE, or UPDATE, the property
returns the number of records affected.

This property returns a value of zero in the following cases:
¢ The SQL command has not been queued.
¢ The SQL command has been queued but is not completed.
¢ The SQL command has completed with an error.

Syntax
int RowCount;

Public Enumerations

The following public enumerations apply to the aaDBCommand object.

aaDBCommandState

This public enumeration indicates the state of an aaDBCommand object.

Created

This value indicates that the command has been created. However, the command has not yet run, and you can
assign parameters to the command.

Queued

This value indicates that the command is queued for execution. This state occurs immediately after the call to
aaDBCommand.ExecuteAsync() or aaDBCommand.ExecuteSync(). Queued is a transitional state that changes to
either Failed or Completed.

Failed

This value indicates that the command failed.

Completed

This value indicates that the command completed successfully.

Canceled

This value indicates that the command has been canceled.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 48

A V — VA AVEVA™ SQLData Script Library User Guide
— Chapter 3 —aaDBCommand Object

Disposed

This value indicates that Dispose() has been called for the command object. Disposed is automatically set when
aaDBAccess.RemoveCommand() is called, or when Dispose() is called on the connection object or transaction
object that owns the command.

aaDBCommandType

This public enumeration describes how the command text for an aaDBCommand object is used.

Note: When you use the aaDBCommandType enumeration, be aware that not all requests work with all data
providers. For example, Microsoft Access does not support stored procedures. The InputOutput direction is not
supported by all data providers. Always check the documentation for the data providers about supported
options.

sqlStatement

Indicates that the command text is a valid SQL statement.

storedProcedure

Indicates that the command text is a stored procedure name.

aaDBParameterDirection

This public enumeration indicates the direction of parameters used for SQL statements.

Note: When you use the aaDBParameterDirection enumeration, be aware that not all requests work with all
data providers. For example, Microsoft Access does not support stored procedures. The InputOutput direction is
not supported by all data providers. Always check the documentation for the data providers about supported
options.

Input

This value indicates that the parameter is input only.

InputOutput

This value indicates that the parameter is capable of both input and output.

Output

This value indicates that the parameter is output only.

ReturnValue

This value indicates the presence of a return value from an operations such as a stored procedure, built-in
function, or user-defined function.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 49

AV=VA

Chapter 4
aaDBConnection Object

About aaDBConnection Object

Use objects of type aaDBConnection to create a new aaDBCommand object or aaDBTransaction object. You can
create instances of aaDBConnection only through the static methods aaDBAccess.CreateConnection() or
aaDBAccess.GetConnection().

Creating an instance of the aaDBConnection object is not equivalent to creating and maintaining a physical
connection to the data source.

The actual physical connection opens on demand when a request is made to run aaDBCommand objects or
aaDBTransaction objects. The physical connections are controlled by the Database Connection Manager (DCM).

The SQLData Script Library does not expose any mechanism to allow you to fine-tune its behavior, such as
defining how many connections to use.

Connection Pooling

When you request a SQL command or transaction to be run on the aaDBConnection object, an actual physical
connection is opened on demand and closed when the command or transaction finishes processing.

The SQLData Script Library uses the DCM common component in regard to connection pooling. When an
aaDBConnection object is first created, no attempt is made to achieve a physical connection. The
ConnectionState property remains in the Disconnected state. The physical connection is attempted only after a
command object is run (a stand-alone command object or a command object that is part of a transaction).

After the first command object that requires a physical connection runs, the physical connection remains open
for an unspecified period (depending on loading) and closes automatically after a time.

If a script requires confirmation of a successful physical connection, it must issue some benign SQL statement
and then check the ConnectionState property of the connection.

Note: You must call Dispose() on each instance of aaDBConnection.

Methods

You can use the following methods with the aaDBConnection object.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 50

A V — VA AVEVA™ SQLData Script Library User Guide
— Chapter 4 —aaDBConnection Object

CreateCommand()

Use the CreateCommand() method to create a new aaDBCommand object.

Syntax

aaDBCommand CreateCommand (
string CommandText,
aaDBCommandType CommandType,
bool ReturnDataset)

Parameters
You can also configure the newly created object by adding parameters and then executing them.
The parameters are identified in the SQL statement by the at sign (@) character when ProviderType is SQL.
The following SQL statement has one parameter, lastName:
"SELECT * FROM Person.Contact WHERE (LastName > @lastName)"

CreateCommand for Oracle

The parameters are identified in the SQL statement by the colon (:) character when ProviderType is Oracle.
"SELECT * FROM Person.Contact WHERE (LastName > :lastName)"

CreateCommand for OLEDB

The parameters are identified in the SQL statement by the question mark (?) character and no name when
ProviderType is OLEDB.
"SELECT * FROM Person.Contact WHERE (LastName > ?)"

In this case, you configure the parameters by index and not by name.

Be aware that you cannot mix configuration parameters by index and by name.

Return Value

If a failure occurs, this method returns null.

Getting the ExecutionState property of the newly-created command object returns Created.
Parameters

CommandText
One of the following:
SQL Statement
Stored Procedure name

CommandType
Specifies how the SQL statement is handled:
sqlStatement
storedProcedure

ReturnDataset
Boolean, indicates if the command object is to return a dataset
If True, you want a data table to be returned. For example:

sqlStatement ="SELECT * FROM Person.Contact"

If False, you want to modify only the database or get the Output or ReturnValue parameter. Examples are
INSERT, DELETE, and UPDATE SQL statements.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 51

A V — VA AVEVA™ SQLData Script Library User Guide
— Chapter 4 —aaDBConnection Object

The data that is returned upon successful execution of a query (Table, View or StoredProcedure) is stored in
memory. Scalar values are not returned, other than by being part of the returned dataset.

You can then access this data by using the interface provided by the aaDBCommand object.

CreateTransaction()
Use the CreateTransaction() method to create a new aaDBTransaction object.

Syntax
aaDBTransaction CreateTransaction()

Return Value

If a failure occurs, this method returns null.

Getting the ExecutionState property of the newly-created aaDBTransaction object returns Created.
Remarks

You add aaDBCommand objects to this object that are processed as a whole in the order that they were added.

Dispose()
Use the Dispose() method to free all memory resources associated this database connection object.

Syntax
void Dispose()

Remarks

If commands or transactions are running when Dispose() is called, Dispose() cancels the command or transaction
object.

GetDiagnostics()

Use the GetDiagnostics() method to return a set of diagnostic information about all connections in a dataset.

Syntax
void GetDiagnostics()

Remarks

The returned dataset contains multiple tables. The table with index 0 contains the global diagnostics. The rest of
the tables in the dataset correspond to each DCMConnection object. For details about diagnostic properties, see
the SQLData Object Help.

LogDiagnostics()

Use the LogDiagnostics() method to dump a snapshot of all available connection diagnostic information to the
logger. For details about diagnostic properties, see the SQLData Object Help.

Syntax
void LogDiagnostics()

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 52

A V — VA AVEVA™ SQLData Script Library User Guide
— Chapter 4 —aaDBConnection Object

ResetDiagnostics
Use the ResetDiagnostics() method to reset the current diagnostic values of the connection object.

Syntax
void ResetDiagnostics()

Properties

You can use the following properties with the aaDBConnection object.

ConnectionName

Use this property to enable the log of diagnostics that was generated by calling aaDBAccess.LogDiagnostics() to
include a meaningful name. Having a meaningful name may be necessary if a debugging effort requires you to
distinguish one connection from another. To see the connection name in the logged diagnostics, look for the line
that reads as follows:

aaDBIntegration ConnectionName, <Name>, , Clilent assigned conection name,

The <Name> part of the line is replaced with the name that the script has applied to the ConnectionName
property of the aaDBConnection object. If the ConnectionName property has not been assigned a name by the
script, it defaults to a name of the form SQLScriptConnection<N>, where <N> is an incrementing integer value.

Syntax
String ConnectionName
ConnectionState

Use this read-only property to verify that the connection string specified by GetConnection successfully
establishes the initial connection to the data source.

Note: You cannot use this property to determine the status of an actual physical connection to the data source.
No polling mechanism is available to detect a broken connection.

If intermittent network failures occur, ConnectionState does not indicate the failure until a command or
transaction is run. However, when a command is run, the ConnectionState property updates the current
connection state.

The return type is an enumerated value of type aaDBConnectionState.
Syntax
aaDBConnectionState ConnectionState

Disposed

This read-only property indicates whether Disposed() has been called for a connection object. If the property
returns True, no other method or property can be called on this instance.

Syntax
Bool Disposed

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 53

A V — VA AVEVA™ SQLData Script Library User Guide
— Chapter 4 —aaDBConnection Object

LastError

Use this read-only property with the ExecutionState property. It returns the last error string generated by the
provider.

This property shows a description of errors that were encountered while parsing the connection string. The
string comes from exceptions thrown by the Microsoft object or data provider objects.

Syntax
string LastError

Public Enumerations

The following public enumerations apply to the aaDBConnection objects.

aaDBConnectionState
This public enumeration determines the state of the aaDBConnection object. Each value reflects the current
state of the connection in the DCM.
Disconnected

Disconnected is the state of the aaDBConnection object immediately after it transitions through Connected or
fails to connect. The disconnect timing is controlled by the underlying ADO.Net communication pooling logic.
The Disconnected state remains active until the DCM is required to create a physical connection in response to a
command.

A previous connected state can transition to a disconnected state if a command is run and the physical
connection has been lost.

Connecting

This value indicates a transition state. It indicates that the DCM has started a physical connection to a database
based on its internal connection pooling logic and the connection is not complete or has not yet failed.

Connected

This value indicates that the DCM has established a physical connection to a database in response to a
command.

Created

This value indicates the initial state for a connection after creation until a transaction or command is run on it.
After the state changes to something else, the state can never return to Created.

Disposed

This value indicates that Dispose() has been called for the connection.

aaDBConnectionType

This public enumeration determines the type of connection that an aaDBConnection object is being created for.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 54

_AV — VA AVEVA™ SQLData Script Library User Guide
— Chapter 4 —aaDBConnection Object

Sql

This value indicates a connection for a Microsoft SQL Server database.

OleDb

This value indicates a connection using Microsoft OLEDB.

Oracle

This value indicates a connection for an Oracle database server.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 55

AV=VA

Chapter 5

aaDBRow Object

This section describes the aaDBRow object and the methods and properties that you can use with it.

aaDBRow Object

Use objects of type aaDBRow to access (set or get) a single row from the memory dataset generated while an
aaDBCommand object is running.

An instance of the aaDBRow object is returned by aaDBCommand.GetRow(). SetCurrentRow() also requires an
instance of this type as an input parameter.

You can modify the aaDBRow object returned by GetRow() and feed it back to SetCurrentRow(), or you can
construct a new aaDBRow object specifically for SetCurrentRow().

The aaDBRow object has two public members both of type ArraylList:
¢ columnName

e columnValue

Note: You can use this type to update a row in the memory table by configuring only a subset of the
columns.

The two arrays must have the same size.

Note: You must call Dispose() on each instance of aaDBRow.

aaDBRow —Public Constructor

You can use a public constructor in a script to create an aaDBRow object from two synchronized ArrayList
objects for use with aaDBCommand.SetCurrentRow().

To use this constructor, first create the new ArrayList objects, and fill them with column names and values. Use
positional placement within the two ArrayList objects to correspond names with values.

Then create a new aaDBRow object with this constructor, passing in the two ArrayList objects. For an example,
see the parameters table in the aaDBConnection.SetCurrentRow() section.

Syntax

aaDBRow(
ArrayList Names,
ArrayList Values)

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 56

A V — VA AVEVA™ SQLData Script Library User Guide
— Chapter 5 — aaDBRow Object

Methods

You can use the following methods with the aaDBRow object.

GetColumnName()
Use the GetColumnName() method to retrieve the name of the column specified by ColumnNum.

Syntax
string GetColumnName (
int ColumnNum)

Return Value

If ColumnNum is equal to or greater than the number of columns stored in the row, as returned by the
ColumnCount property, null is returned.

GetColumnValue()
Use the GetColumnValue() method to retrieve the value of the column specified by ColumnNum.

Syntax
object GetColumnValue(
int ColumnNum)

Return Value

If ColumnNum is equal to or greater than the number of columns stored in the row, as returned by the
ColumnCount property, null is returned.

Note: The value is returned as a generic object and must be cast by the script to the intended type.

Properties

You can use the following properties with the aaDBRow object.

ColumnCount
Use this read-only property to retrieve the number of columns stored in the row object.

Syntax
int ColumnCount

ColumnNames
Use this read-only property to retrieve the ArrayList that internally stores the column names for the row.

Syntax
ArrayList ColumnNames

ColumnValues

Use this read-only property to retrieve the ArrayList that internally stores the column values for the row.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 57

A V — VA AVEVA™ SQLData Script Library User Guide
— Chapter 5 — aaDBRow Object

Syntax
ArrayList ColumnValues

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 58

AV=VA

Chapter 6

aaDBTransaction Object

This section explains how to use the aaDBTransaction object and the methods and properties associated with it.

aaDBTransaction

Use objects of type aaDBTransaction to process multiple aaDBCommand objects as a single unit.

Create instances of type aaDBTransaction by calling the CreateTransaction() method on an instance of the
aaDBConnection object. For example, assuming that the aaDBConnection instance is called Connection:
Connection.CreateTransaction()

If you want to ensure that all SQL commands are run as a whole or not run at all, you must create an instance of
the aaDBTransaction object. Use the instance to create aaDBCommand objects.

When the transaction object is run, all aaDBCommand objects that are added to this aaDBTransaction object are
run in the order that they were added. If the transaction is rolled back, none of the objects are run.

Commands added to a transaction cannot be run as stand-alone command objects but are automatically
processed when the transaction runs.

When a script requests the transaction object ID, the transaction object is flagged to be persisted. The SQLData
Script Library persists the object across scripts and scan cycles.

You can retrieve an aaDBTransaction object at any time by calling the static method aaDBAccess.GetTransaction
() and passing the previously acquired string ID.

Note: You must call Dispose() on each instance of aaDBTransaction.

Methods

You can use the following methods with the aaDBTransaction object.

CreateCommand()

Use the CreateCommand() method to create a new aaDBCommand object. You can configure the new object by
adding parameters and then running it.

Syntax
aaDBCommand CreateCommand (
string CommandText,

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 59

A V — VA AVEVA™ SQLData Script Library User Guide
— Chapter 6 — aaDBTransaction Object

aaDBCommandType CommandType,
bool ReturnDataset)

Remarks

For more details, see Chapter 4, aaDBConnection Object.

Dispose()

Use the Dispose() method to instruct the SQLData Script Library to free all resources allocated for the transaction
object and all commands that were added as part of this transaction.

Syntax
void Dispose()

Remarks
If the transaction is currently running, Dispose() automatically cancels the transaction before removing it.
The SQLData Script Library issues Dispose() calls for every command in the transaction.

If an ID has been retrieved for this command, you must call Dispose() or aaDBAccess.RemoveCommand().

ExecuteAsync()

Use the ExecuteAsync() method to instruct the SQLData Script Library to queue all command objects in the
transaction that are queued for later processing. ExecuteAsync() returns immediately and processing occurs in
the background.

Syntax
Result ExecuteAsync()

Remarks
You can use the ExecutionState property to check for status.

If any commands complete with an error, the SQLData Script Library issues a transaction rollback to prevent
changes to the data source.

After ExecuteAsync() is processed, you can still obtain a reference to any commands that were added and
analyze their ExecutionState and LastExecutionError properties.

When the transaction object runs, all aaDBCommand objects that are added to the aaDBTransaction are run in
the order that they were added. The following outcomes can occur as the result of processing a transaction:

e Success: All commands succeeded. Each command shows an ExecutionState of Completed. Any dataset for
that command is associated with it.

¢ Cancellation: Each command in the transaction shows an ExecutionState of Canceled. Any data associated
with the command is removed.

¢ Failure: When one command in a transaction fails, the command has an ExecutionState of Failed. All
commands preceding it show an ExecutionState of Completed and retain any datasets that were part of
their successful processing.

To free all resources allocated for the transaction object and the commands, you must call Dispose().

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 60

A V — VA AVEVA™ SQLData Script Library User Guide
— Chapter 6 — aaDBTransaction Object

ExecuteAsyncCancel()

Use the ExecuteAsyncCancel() method to instruct the SQLData Script Library to roll back all commands that are
gueued as part of a transaction.

Syntax
Result ExecuteAsyncCancel()

Remarks
You can use the ExecutionState property to check for status.

As a result of successful execution, all command objects created from this transaction are canceled.

ExecuteSync()

Use the ExecuteSync() method to instruct the SQLData Script Library to run all commands that are queued as
part of a transaction.

Syntax
Result ExecuteSync()

Remarks
Use the ExecutionState and LastExecutionError properties to check for status of this method.

If any one of the commands completes with an error, the SQLData Script Library issues a rollback action to
guarantee that the data source does not see any of the changes.

When the transaction object runs, all aaDBCommand objects that are added to the aaDBTransaction are run in
the order that they were added. The following outcomes can occur as the result of processing a transaction:

¢ Success: All commands succeeded. Each command shows an ExecutionState of Completed. Any dataset for
that command is associated with it.

¢ Cancellation: Each command in the transaction shows an ExecutionState of Canceled. Any data associated
with the command is removed.

¢ Failure: When one command in a transaction fails, that command object has an ExecutionState of Failed. All
command objects preceding it show an ExecutionState of Completed and retain any datasets that were part
of their successful processing.

After ExecuteSync() is processed, you can still obtain a reference to the command objects that were added and
analyze their ExecutionState and LastExecutionError properties.

Use the LastExecutionError property to check if the command failed or succeeded (success is indicated by a
blank string), since ExecuteSync() may return 0 in the case of a failure instead of an error message.

To free all resources allocated for the aaDBTransaction object and the aaDBCommand objects you must call
Dispose().

GetlID()

Use the GetID() method if you want to retrieve the ID of an aaDBTransaction object instance to get a reference
to this object at a later time in a different script or scan.

The SQLData Script Library generates a unique transaction ID and persists the transaction object in memory.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 61

_AV — VA AVEVA™ SQLData Script Library User Guide
— Chapter 6 — aaDBTransaction Object

Syntax
string GetID()

Return Value

If a failure occurs, the GetlD() method returns null.

Note: The SQLData Script Library returns a string value, but the script engine automatically attempts to cast this
value to other types. If the script assigns the returned ID to any other type than string, the ID is corrupted and
does not work in future GetTransaction(ID) calls.

Properties

Use the following properties with the aaDBTransaction object.

Disposed

This read-only property indicates whether Disposed() has been called for a transaction object. If the property
returns True, no other method or property can be called on this instance.

Syntax
Bool Disposed

ExecutionState

Use this read-only property to return the state of this transaction object.

Because the processing of the transaction is asynchronous, you must determine if it has finished processing
before you request the results.

Syntax
aaDBTransactionState ExecutionState

FailedCommandID

Use this property to return the ID of the first failed command object during transaction processing.
If the processing action succeeds, FailedCommandID = 0.

Syntax
string FailedCommandID

LastExecutionError

During processing, this property is set to the last error, if any. The error string is the error string generated by the
provider.

Use this property in conjunction with the ExecutionState property.

LastExecutionError indicates the error generated by the provider for the first command object in the transaction
that failed.

To find the command object that failed to process, check the FailedCommandID property.

LastExecutionError is blank when the transaction runs successfully.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 62

A V — VA AVEVA™ SQLData Script Library User Guide

Chapter 6 — aaDBTransaction Object

Syntax
string LastExecutionError

Public Enumeration

The following public enumeration applies to the aaDBTransaction object.

aaDBTransactionState

This public enumeration indicates the state of an aaDBTransaction.

Created

This value indicates that a transaction has been created. The transaction has not yet run. You can add commands
to the transaction.

Queued

This value indicates that the transaction has been queued to run. This state occurs immediately after an
aaDBTRansaction.ExecutedAsync() or aaDBTRansaction.ExecutedSync() call. Queued is a transitional state that
changes to either Failed or Completed.

Failed

This value indicates that the transaction has failed.

Completed

This value indicates that the transaction completed successfully.

Canceled

This value indicates that the transaction was canceled before it could complete.

Disposed

This value indicates that the Dispose() method has been called for the command object. Disposed is
automatically set when aaDBAccess.RemoveTransaction() is called or when the connection object that owns the
transaction is disposed.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 63

AV=VA

Appendix A

Error Codes

Various API scr

ipting methods return an error code as a numeric value.

Methods with syntax descriptions that begin with "result" return these numeric values.

This table shows the numeric value, its corresponding error, and meaning of each error code.

Numeric

Value Error Text and Description

-1 Unknown Failure
This value indicates an exception whose reason could not be determined at run
time.

0 Success
This value indicates a good result; no error occurred.

100 SoftwareError
This indicates that the internal code returned an unexpected result, but the case
was handled.

1000 StatementNotReady
This error is returned when an aaDBCommand object is run, but it is not properly
prepared for processing.

1001 StatementFailed
This error is returned when an aaDBCommand object runs and fails to complete
properly. This result occurs when the SQL query is malformed.

1002 DatasetlIsNull
This error is returned when the results of an aaDBCommand object are being
examined or manipulated, but no dataset is associated with the object. This
message can mean that the command has not yet run, the SQL query was
malformed, or the object was not of a type to return data.

© 2022 AVEVA Group plc

and its subsidiaries. All rights reserved.

Page 64

AV=VA

AVEVA™ SQLData Script Library User Guide
Appendix A — Error Codes

Numeric
Value

Error Text and Description

1003

DatasetisEmpty

This error occurs when the currently selected row or table number is beyond the
end of the data in the dataset that is associated with the aaDBCommand object.

1004

InvalidConnection

This error is returned when an aaDBCommand attempts to run and the
connection object it is attached to has not established a good connection to the
database.

1005

InvalidRowNum

This error is returned by aaDBCommand.SelectRow() when the row number
specified is negative or larger than the number of rows in the dataset that is
associated with the aaDBCommand object.

1006

InvalidColValue

This error is returned when a column is examined or manipulated by the index
and the index does not represent a valid column number.

1007

InvalidTableNum

This error is returned by aaDBCommandSelectTable() when the table number
does not represent a table that is currently stored in the dataset that is
associated with the aaDBCommand object.

1008

MissingParameter

This error is returned when an OLEDB style aaDBCommand object is run and not
all parameter indexes were supplied.

1009

NamedParametersNotSupported

This error is returned when an attempt is made to call
SetXXXParameterByName() for a non-OLEBB style aaDBCommand object.

1010

ParameterNamelsRequired

This error is returned when an attempt is made to call
SetXXXParameterByindex() for a non-OLEBB style aaDBCommand object.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved.

Page 65

AV=VA

AVEVA™ SQLData Script Library User Guide
Appendix A — Error Codes

Numeric

Value Error Text and Description

1011 InvalidRequestOperationinProgress
This error is returned when an attempt is made to run an aaDBCommand object
that is currently processing.
If a command or transaction is currently in progress through ExecuteAsync(), that
same object cannot be executed again with ExecuteAsync() or ExecuteSync()
until the previous process is complete. Only a single object can be in the
processing queue at any time.

1012 SaveChangesNotSupportedForStoredProcedure
This error is returned when either SaveChangesSync() or SaveChangesAsync() is
called after manipulating the dataset associated with an aaDBCommand object
whose query was originally against a stored procedure.

1013 InvalidRequestNotSupportedinCurrentState
This error is returned when the aaDBCommand object is not in a state where the
requested run or cancel can be honored.

1014 InvalidRequestPartOfTransaction
This error indicates that you attempted to run or save changes to an
aaDBCommand object that was created to be part of an aaDBTransaction. This
activity is not permitted.

1015 DCMObjectinvalid
This error indicates that the DCM cannot provide an object to support
aaDBConnection, aaDBCommand, aaDBTransaction.

1016 ObjectisDisposed
The script attempted to use an object after calling Dispose().

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved.

Page 66

	Contact Information
	Contents
	Using the SQLData Script Library
	About Using the SQLData Script Library
	Importing and Accessing the SQLData Script Library
	SQLData Script Library Interface
	SQLData Script Library Architecture

	SQLData Script Library Work Flow
	Creating a Connection Object with a Command
	Creating a Connection Object with a Transaction
	Specifying Connection Strings
	Connecting to a SQL Server Data Source
	Connecting to an Oracle Data Source
	Connecting to Microsoft Access through OLEDB
	Connecting to Microsoft Excel through OLEDB

	Example Scripts
	Overview of Sample Scripts
	Detailed Description of Sample Scripts
	Asynchronous Command Script
	Query Script Configuration
	Process Script Configuration
	Query Script Code
	Process Script Code

	Synchronous Transaction Script
	QueryandProcess Script Code

	aaDBAccess Object
	About aaDBAccess Object
	Creating a Reusable Connection Object
	Creating a Unique Connection Object
	Differences Between CreateConnection() and GetConnection()
	Working with Connections
	Windows Integrated Security
	Windows Account
	SQL Server Authentication

	Methods
	CreateConnection()
	Connecting to Databases Other Than SQL Server

	GetCommand()
	GetConnection()
	Authentication
	Connecting to Databases Other Than SQL Server

	GetDiagnostics()
	GetTransaction()
	LogDiagnostics()
	RemoveCommand()
	RemoveTransaction()
	ResetDiagnostics
	Shutdown()

	aaDBCommand Object
	About aaDBCommand Object
	Methods
	AddRow()
	DeleteCurrentRow()
	Dispose()
	ExecuteAsync()
	ExecuteAsyncCancel()
	ExecuteSync()
	GetCurrentRowColumnByIndex()
	GetCurrentRowColumnByName()
	GetDataSet()
	GetId()
	GetParameterByIndex()
	GetParameterByName()
	GetRow()
	SaveChangesAsync()
	SaveChangesSync()
	SelectRow()
	SelectTable()
	SetCurrentRow()
	SetCurrentRowColumnByIndex()
	SetCurrentRowColumnByName()
	SetParam Type Methods for SQL Server and Oracle
	Output Parameters
	SetBitParameterByName()
	SetCharParameterByName()
	SetDecimalParameterByName()
	SetDateTimeParameterByName()
	SetDoubleParameterByName()
	SetFloatParameterByName()
	SetIntParameterByName()
	SetLongParameterByName()

	SetParam Type Methods for OLEDB
	SetBitParameterByIndex()
	SetCharParameterByIndex()
	SetDateTimeParameterByIndex()
	SetDecimalParameterByIndex()
	SetDoubleParameterByIndex()
	SetFloatParameterByIndex()
	SetIntParameterByIndex()
	SetLongParameterByIndex()

	Properties
	CommandTimeout
	CurrentRowNumber
	CurrentTableNumber
	Disposed
	ExecutionState
	LastExecutionError
	RowCount

	Public Enumerations
	aaDBCommandState
	Created
	Queued
	Failed
	Completed
	Canceled
	Disposed

	aaDBCommandType
	sqlStatement
	storedProcedure

	aaDBParameterDirection
	Input
	InputOutput
	Output
	ReturnValue

	aaDBConnection Object
	About aaDBConnection Object
	Connection Pooling
	Methods
	CreateCommand()
	CreateCommand for Oracle
	CreateCommand for OLEDB

	CreateTransaction()
	Dispose()
	GetDiagnostics()
	LogDiagnostics()
	ResetDiagnostics

	Properties
	ConnectionName
	ConnectionState
	Disposed
	LastError

	Public Enumerations
	aaDBConnectionState
	Disconnected
	Connecting
	Connected
	Created
	Disposed

	aaDBConnectionType
	Sql
	OleDb
	Oracle

	aaDBRow Object
	aaDBRow Object
	aaDBRow —Public Constructor

	Methods
	GetColumnName()
	GetColumnValue()

	Properties
	ColumnCount
	ColumnNames
	ColumnValues

	aaDBTransaction Object
	aaDBTransaction
	Methods
	CreateCommand()
	Dispose()
	ExecuteAsync()
	ExecuteAsyncCancel()
	ExecuteSync()
	GetID()

	Properties
	Disposed
	ExecutionState
	FailedCommandID
	LastExecutionError

	Public Enumeration
	aaDBTransactionState
	Created
	Queued
	Failed
	Completed
	Canceled
	Disposed

	Error Codes

