AV=VA

AVEVA™ Scripting

AV=VA

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved.

No part of this documentation shall be reproduced, stored in a retrieval system, or transmitted by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of AVEVA.
No liability is assumed with respect to the use of the information contained herein.

Although precaution has been taken in the preparation of this documentation, AVEVA assumes no responsibility
for errors or omissions. The information in this documentation is subject to change without notice and does not
represent a commitment on the part of AVEVA. The software described in this documentation is furnished under
a license agreement. This software may be used or copied only in accordance with the terms of such license
agreement.

ArchestrA, Avantis, Citect, DYNSIM, eDNA, EYESIM, InBatch, InduSoft, InStep, IntelaTrac, InTouch, OASyS,
PIPEPHASE, PRiSM, PRO/II, PROVISION, ROMeo, SIM4ME, SimCentral, SimSci, Skelta, SmartGlance, Spiral
Software, WindowMaker, WindowViewer, and Wonderware are trademarks of AVEVA and/or its subsidiaries. An
extensive listing of AVEVA trademarks can be found at: . All other brands may be trademarks of their respective
owners.

Publication date: Wednesday, May 4, 2022
Contact Information

AVEVA Group plc
High Cross
Madingley Road
Cambridge

CB3 OHB. UK

https://sw.aveva.com/
For information on how to contact sales and customer training, see https://sw.aveva.com/contact.
For information on how to contact technical support, see https://sw.aveva.com/support.

To access the AVEVA Knowledge and Support center, visit https://softwaresupport.aveva.com.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 2

AV=VA

Contents

Chapter 1 Common Scripting Environment. 8

Script Editing Styles and SyntaX.ot it ittt i it i i ettt e e e e 8
Required Syntax for Expressions and SCripts.o vttt iiiii it initerierenreaseeseesassasansanss 8
] 13T 1 L30T o T 9
SCriPt EXECULION TYPS. . o i ittt it ittt ittt ettt et taeesennsenassosasssnsssasssnasssnssnnnsans 9
SEarTUP SCIiPES. oot e e e e 13
ONSCaN SIS, vttt et e e e e e 15
EXECULE SO, . ottt e e e e 16
O S CaN SCIIPES. oottt e e 19
SHULOWN SCriPES. . ottt e e 20
DEPlOYM Nt SIS, . ottt e e 22
Working with QuickScript Editor Features.ciiitiitin ittt ieteetenrenrensansasaneannans 23
Color Indicators for Script Elements.o i e 23
AUTOCOMIPIETE. . . oot e 24
Accepting Autocomplete SUgEESTIONS.ottt e 28
Multi-level Undo and Redo.ottt e e e 28
Dynamic Referencing Considerations.ttt i e e e e e 28
Run-Time Client Script Behavior. e e e e e e e e e e 31
Opening a Client Application Window. e e e e e et 31
Closing a Client Application WindoWw.ottt e e et e ettt e e 31
Minimizing a Client Application Window. i e e e e 31
Maximizing or Restoring a Client Application Window. i i 31
Visual Indication of Script Errors.ot e 32
LiNe NUM IS, ottt e e e e e e e e e e 32
Lo FUNCHIONS. it e e e e e e e e e e 32
Chapter 2 QuickScript NETFunctions.ciiiiiitiiinneernnnnennnns 33
SCHPt FUNCHIONS. . . oottt i ittt ittt tetieeetenaeenaetanensssnsssnssonasssnssnannsns 33
Graphic Client FUNCHONS.t e e et et et et e et e e e e e e e 33
GEtCPQUAlIEY (). « v v v ettt e e e e 33
GetCPTIMESTAMP(). o o ot ot et e 34
GetREEIENCES(). . o v oot e 34
HIdeContent(). . .o oot 36
HIdeGraphiC(). . .. oo e e e e 40
HIdeS eI (). . oottt 41

o= 1 1 TS 41
SHOWECONTENT(). « oottt et e e e e e 41

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 3

AV=VA

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved.

ShowGraphic(). ... i
ShowLoginDialog()
InTouch Functions
AddPermission() Function
AttemptlinvisibleLogon() Function
ChangePassword() Function
EnableDisableKeys() Function
FileCopy() Function
FileDelete() Function
FileMove() Function
FileReadFields() Function
FileReadMessage() Function
FileWriteFields() Function
FileWriteMessage() Function
GetAccountStatus() Function
GetNodeName() Function
InfoAppTitle() Function
InfoDisk() Function

InfoFile() Function

InfolnTouchAppDir() Function
InTouchVersion() Function
InvisibleVerifyCredentials() Function
IsAssignedRole() Function
LaunchTagViewer() Function
LogonCurrentUser() Function
PlaySound() Function
PostLogonDialog() Function
PrintScreen() Function
QueryGroupMembership() Function
ShowHome() Function
Starting a Windows Application
SwitchDisplayLanguage() Function
TseGetClientld() Function
TseGetClientNodeName() Function
TseQueryRunningOnClient() Function
TseQueryRunningOnConsole() Function
Math Functions

AVEVA™ Scripting
Contents

Page 4

AV=VA

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved.

LOgError(). ..o
LogMessage(). . oo e
LogTrace(). . v vt et
LogWarning().ovi i
SendKeys(). . .o i
SetAttributeVT().

SetAttributeVT2()

SetBad(). ..o i
SetGood(). ..o
Setlnitializing().
SetUncertain(). ...
SignedAckAll().

SignedAlarmAck()

SignedWrite().o
WriteStatus(). o i
WWControl().o

Stringleft().
Stringlen().
Stringlower().
StringMid().o
StringReplace().coovi i

StringRight().

AVEVA™ Scripting
Contents

Page 5

AV=VA P ot

SEMINESPACE(). .+« ottt et 122
STt). « o ettt e e 123
SEINGTOINTE (). « o v ot et 124
SEANGTOREAI(). . . o ettt 124
SEINET M).« o oot 125
SEINGUPPEI (). - ottt e e 126

TEXE(): e v et e e e 126
WWStHNGFromTime(). . ..ottt e e e e e 127

SYStEM FUNCHIONS. . . . e e e e e e 128
CreateObeCt(). . . oot 128

NOW). v e et e e e e e e e e e e 128
WWDDE FUNCHIONS. . ettt e e e e e e e e e e e e e e e e e 128
WIWEXECULE(). « o v et ettt e e e e e e e e e 128
WWPOKE(). -« v e e e e e e e e e e e e e e e e 129

WW REQUEST(). v ot ettt e e e e e e e 130
QUICKSCHiPt LNET OPerators. v oot i i tee et teeeeeneeneeneaneaneaneneenesasaneansansansnssnsns 131
PareNthESeS (). oot 133
NEBAtION (-). ottt e e 133

(070 '] o] 1= o 1 =T o1 (o T 133
PO T (5). o 133
Multiplication (*), Division (/), Addition (+),Subtraction (-).cc ... 134
MOUIO (MOD). . ettt e e e e e 134
Shift Left (SHL), Shift Right (SHR). . . . oot e e e e et 134
BItWise AND (&). o v vttt ettt e e e e 134
Exclusive OR (A) and INCIUSIVE OR (|). oo vttt e e e e e e e e e e e et e 134
ASS BN BNt (=). .ottt et e e e 135
ComMPArisONS (<, >, <=, >=, =2, K)ttt ettt et et e e e 135
AND, OR, and NOT. . ..ottt ettt e e e e e e e e e e e e e 135
QuickScript NETVariables. oottt ittt ittt iia e tessasensensonssnsossassnnans 135
NUMbErs and StriNgS. . ..ottt e e e e e e 137
QuickScript .NET Control Structures.ot ittt ittt ittt eeraenassnsansansansaesnnnnns 138
IF ... THEN ... ELSEIF ... ELSE ... ENDIF. . . ottt e e e e e e e e 138

IF ... THEN ... ELSEIF ... ELSE ... ENDIF and Attribute Quality. 140
FOR ... TO ... STEP . NEXT LOOP. « ettt et ettt et e e e e e e e e e e e e e e e 140
FOR EACH ... IN oo NEXT . oottt e e e e e e e e e e e e e e e e 141
TRY o CATCH. ottt e e e e 142

LT 8 Yo o P 143
Chapter 3 Sample QuickScript NETScripts. ...t iiinnnnnn. 144
Accessing an Excel Spreadsheet Using an Imported Type Library. ...ttt iiiinnnnnns 144
Accessing an Excel Spreadsheet Using CreateObject.ciiiiiiiiiin it ierenennennennnns 145
Calling a Web Service to Get the Temperature for a Specified ZipCode.o i iiiii it inenns 145
Calling a Web Serviceto Send an E-mail Mlessage.ot iiiii ittt iietenennennennennnnens 145
Creating a Look-up Table and DoingaLook-uponlt.oiiiiiiiiiii i iiiinrenennennnnnnns 146
Creating an XML Document and Saving it to DisK. i it it i it it ettt ieieereennennns 146
Executing a SQL Parameterized INSERT Command.o iiiiiiiiiiiintenrnnrenronsesansansans 147

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 6

_AV — V A AVEVA™ Scripting

Contents

Fillinga String Array and Using oottt it ittt it it e iieiieiereenassasansonsonsnnnnas 147
Filling a Two-Dimensional Integer Arrayand Using It. ittt ittt ieiennnennenn 147
Formatting a Number Using a .NET Format 'Picture’.ottt it ittt it eennnnnnns 148
Formatting a Time Using a .NET Format 'Picture’. ittt ittt ieereenaennnnnns 148
Getting the Directories Underthe CDrive.o vttt iii ittt ittt tettatiatnnsnosnonnsnasanss 148
Loading an XML Document from Disk and Doing Look-upsonlt... ...t iiinnnnnnnnn 148
QueryingaSQLServer Database.ciiiiiiiiii it i i i i e e i e 148
Reading a Performance CoUNter.ttt it it ieteteeeenennennsaneeneenenesnennsannanns 149
ReadingaText File from Disk.cciitii ittt ittt eietnareanensoosossassasansanss 149
Sharing a SQL Connection or Any Other .NETObject.ccitiiiiiiiiiii it eieernennnnnns 149
Using DDE to Access an Excel Spreadsheet.ttt it it i iieiieiiennennss 149
Using Microsoft Exchange to Send an E-mail Message. cviiiii it iieiieinrenrannnnnnnnns 150
Using Screen-Scraping to Get the Temperaturefora City.cciiiiiiiiiii it ieennennnnnns 150
Using SMTP to Send an E-mail M@ssage.o v ittt iiiiiii it i tietenennenneaneanennanennens 150
Writing aText File to DisK.o v ittt ittt ittt ittt tenteatensessasonsensansansonsansns 151
Dynamically Binding an Indirect Variabletoa Reference.ttt i innnnnnn. 151
Binding to Off-engine Attributes. o e 152

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 7

AV=VA

Chapter 1

Common Scripting Environment

This section describes common styles, syntax, commands, and behaviors of scripts within AVEVA™ Application
Server.

Script Editing Styles and Syntax

Application Server supports two types of scripts:

¢ Simple scripts can perform assignments, comparisons, simple math functions, and similar actions. Simple
scripts are described in this section.

¢ Complex scripts can perform logical operations using conditional branching with IF-THEN-ELSE type control
structures. For more information about complex control structures, see QuickScript .NET Control Structures.

msn

Both single and multi-line comments are supported. Single-line comments start with a
no ending """

in the line but require
in the line. Multi-line comments start with a "{" and end with a "}" and can span multiple lines.

White space rules apply for space and indention. Indent using spaces, or the TAB key. Individual statements are
indicated by a semicolon marking the end of the statement.

Required Syntax for Expressions and Scripts

The syntax in scripts is similar to the algebraic syntax of a calculator. Most statements are presented using the
following form:
a=(b-c)/ (2+x)* xyz;

This statement places the value of the expression to the right of the equal sign (=) in the variable location named
lla.

¢ Asingle entity must appear to the left of the assignment
operator =.

¢ The operands in an expression can be constants or variables.

e Statements must end with a semicolon (;).

Entities can be concatenated by using the plus (+) operator. For example, if a data change script such as the one
below is created, each time the value of "Number" changes, the indirect entity "Setpoint" changes accordingly:
Number=1;

Setpoint = "Setpoint" + Text(Number, "#");

Where the result is "Setpoint1."

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 8

A V — VA AVEVA™ Scripting

Chapter 1 — Common Scripting Environment

Simple Scripts

Simple scripts implement logic such as assignments, math, and functions. An example of this type of scripting is:
React_temp = 150;

ResultTag = (Samplel + Sample2)/2;

{this is a comment}

Script Execution Types

This section describes the script execution types supported by AVEVA Application Server and OMI.
e Startup Scripts
e OnScan Scripts
e Execute Scripts

OffScan Scripts
e Shutdown Scripts

e Deployment Scripts

Scripting Redundant AppEngines

There are certain considerations that you must take into account when writing a script that will run on
redundant AppEngines. This section outlines whether or not a script will run under various scenarios, including
deploy, forced failover, system failure, system startup, and undeploy operations. Redundant engines can be set to
run in either Legacy Mode or Run Warm Mode. The selected mode may change the circumstances under which
a script will execute.

Run Warm Mode provides much faster failover performance, but there are internal differences between the
redundancy modes in how the engines start and stop. Therefore, Startup and Shutdown scripts for redundant
engines may operate differently, depending on which redundancy mode is selected.

Note: New redundant engines default to Run Warm Mode. Redundant engines in migrated galaxies default to
Legacy Mode.

The following tables summarize the circumstances under which each script execution type runs when
redundancy is set to Legacy Mode (differences between the two modes are highlighted):

Primary Engine
Legacy Mode (on Server 1) Executes on Server 1
Action Initial State | End State | Startup |OnScan |Execute |OffScan rS‘hutdow
Deploy Down Active Y Y Y N N
OnScan
Forced Failover Active Standby N N N Y Y
OnScan

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 9

A V — V A AVEVA™ Scripting
— Chapter 1 — Common Scripting Environment

Primary Engine
Legacy Mode (on Server 1) Executes on Server 1
Server 1 Failure Active Down N N N N N
(hard shutdown) OnScan
Server 2 Failure Active Active N N Y N N
(hard shutdown) OnScan OnScan
Graceful shutdown | Active Down N N N Y Y
of Server 1 OnScan
Graceful shutdown | Active Active N N Y N N
of Server 2 OnScan OnScan
Start Server 1 Down (was |Active Y Y Y N N
OnScan) OnScan
Start Server 2 Active Active N N Y N N
(Server 1 running) OnScan OnScan
Undeploy Active Down N N N Y Y
OnScan
Backup Engine
Legacy Mode (on Server 2) Executes on Server 2
Action Initial State |End State |Startup |OnScan |Execute |OffScan :hutdow
Deploy Down Standby N N N N N
Forced Failover Standby Active Y Y Y N N
OnScan
Server 1 Failure Standby Active Y Y Y N N
(hard shutdown) OnScan
Server 2 Failure Standby Down N N N N N
(hard shutdown)
Graceful shutdown |Standby Active Y N N N N
of Server 1 OFFscan

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 10

A V — V A AVEVA™ Scripting

Chapter 1 — Common Scripting Environment

Backup Engine

Legacy Mode (on Server 2) Executes on Server 2

Graceful shutdown |Standby Down N N N N N
of Server 2

Start Server 1 Down Down N N N N N
Start Server 2 Down Standby N N N N N
(Server 1 running)

Undeploy Standby Down N N N N N

The following tables summarize the circumstances under which each script execution type runs when
redundancy is set to Run Warm Mode (differences between the two modes are highlighted):

Primary Engine Executes on
Run Warm Mode (on Server 1) Server 1
Action Initial State |End State |[Startup |OnScan |Execute |OffScan |Shutdow
n
Deploy Down Active Y Y Y N N
OnScan
Forced Failover Active Standby Y N N Y Y
OnScan
Server 1 Failure Active Down N N N N N
OnScan
Server 2 Failure Active Active N N Y N N
(hard shutdown) OnScan OnScan
Graceful shutdown |Active Down N N N Y Y
of Server 1 OnScan
Graceful shutdown | Active Active N N Y N N
of Server 2 OnScan OnScan
Start Server 1 Down Active Y Y Y N N
(previously OnScan
OnScan)

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 11

A V — V A AVEVA™ Scripting

Chapter 1 — Common Scripting Environment

Primary Engine Executes on
Run Warm Mode (on Server 1) Server 1
Action Initial State |End State |Startup |OnScan |Execute |OffScan |Shutdow
n
Start Server 2 Active Active N N Y N N
(Server 1 running) OnScan OnScan
Undeploy Active Down N N N Y Y
OnScan
Backup Engine Executes on
Run Warm Mode (on Server 2) Server 2
Action Initial State |End State |Startup |OnScan |Execute |OffScan :hutdow
Deploy Down Standby Y N N N N
Forced Failover Standby Active N Y Y N N
OnScan
Server 1 Failure Standby Active N Y Y N N
OnScan
Server 2 Failure Standby Down N N N N N
(hard shutdown)
Graceful shutdown |Standby Active N N N N N
of Server 1 OFFscan
Graceful shutdown |Standby Down N N N N Y
of Server 2
Start Server 1 Down Down N N N N N
Start Server 2 Down Standby Y N N N N
(Server 1 running)
Undeploy Standby Down N N N N Y

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 12

AVEVA™ Scripting
Chapter 1 — Common Scripting Environment

AV=VA

Startup Scripts

Startup scripts are called when an object containing the script is loaded into memory, such as during
deployment, platform, or engine start.

Startup instantiates COM objects and .NET objects. Depending on load and other factors, assignments to object

attributes from the Startup method may fail. Attributes that reside off-object are not available to the Startup

method.

Startup Scripts for Redundant AppEngines

There are certain considerations that you must take into account when writing a Startup script that will run on
redundant AppEngines. This section outlines whether or not a script will be executed under various scenarios,
including deploy, forced failover, system failure, system startup, and undeploy operations.

Redundant engines can be set to run in either Legacy Mode or Run Warm Mode. Startup scripts for redundant
engines may operate differently, depending on the selected redundancy mode.

Note: New redundant engines default to Run Warm Mode. Redundant engines in migrated galaxies default to

Legacy Mode.

¢ Legacy mode (RunWarm attribute is disabled): In Legacy mode, the Standby engine does not start until
failover occurs. This will result in longer failover times when compared with Run Warm Mode. Highlighted
text indicates where there is a difference in script execution between Legacy mode and Warm Redundancy

mode.
Legacy Mode Primary Engine (Server | Backup Engine (Server |Startup Script
1) 2)
. Initial Initial . .
Action State End State State End State |Script Execution
Deploy Down Active Down Standby Startup scripts execute when the
OnScan Primary Engine starts. The Backup
Engine does not start.
Forced Failover Active Standby Standby Active Startup scripts execute when the
OnScan OnScan Backup Engine starts.
Server 1 Failure Active Down Standby Active Startup scripts execute when the
(hard shutdown) OnScan OnScan Backup Engine starts.
Server 2 Failure Active Active Standby Down Startup scripts do not execute in the
(hard shutdown) OnScan OnScan event of a Server 2 failure.
Graceful shutdown | Active Down Standby Active Startup scripts execute when the
of Server 1 platform |OnScan OFFscan Backup Engine starts. The Primary
or engine using engine shuts down, Standby engine is
ocMC started and goes to active but remains
OFFscan.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved.

Page 13

AV=VA

AVEVA™ Scripting
Chapter 1 — Common Scripting Environment

Legacy Mode Primary Engine (Server |Backup Engine (Server |Startup Script
1) 2)
. Initial Initial . .
Action State End State State End State |Script Execution
Graceful shutdown |Active Active Standby Down Startup scripts do not execute.
of Server 2 platform |OnScan OnScan Shutdown of Server 2 has no affect on
or engine using operations. Server 1 continues
OoCMC running OnScan.
Start Server 1 only |Down Active Down Down Startup scripts execute when the
OnScan Primary Engine on Server 1 starts.
Start Server 2 Active Active Down Standby Startup scripts do not execute when
(Server 1 running) OnScan OnScan the Backup Engine starts. Server 1
continues running OnScan.
Undeploy Active Down Standby Down Startup scripts do not execute during
OnScan an undeploy operation.

¢ Run Warm mode (RunWarm attribute is enabled): In Run Warm mode, Startup scripts do not execute
during a failover in most circumstances, since both the Primary and Backup engines start concurrently. The
Backup Engine on Server 2 will only execute Startup scripts if the Primary Engine on Server 1 is down.
Highlighted text indicates where there is a difference in script execution between Legacy mode and Warm
Redundancy mode.

Warm Redundancy

Primary Engine (Server

Backup Engine (Server

Startup Script

Mode 1) 2)
. Initial Initial . .
Action State End State State End State |Script Execution
Deploy Down Active Down Standby Startup scripts execute when the
OnScan Engines start (both Engines start with

warm redundancy).

Forced Failover Active Standby Standby Active Startup scripts do not execute. On

OnScan OnScan Server 1, the Active engine shuts

down and a Standby engine is created.
On Server 2, the Standby engine
previously started and now goes to
Active OnScan.

Server 1 Failure Active Down Standby Active Startup scripts do not execute since

(hard shutdown) OnScan OnScan the Backup engine has already started.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved.

Page 14

A V — VA AVEVA™ Scripting
— Chapter 1 — Common Scripting Environment

Warm Redundancy |Primary Engine (Server | Backup Engine (Server |Startup Script
Mode 1) 2)
. Initial Initial . .
Action State End State State End State |Script Execution
Server 2 Failure Active Active Standby Down Startup scripts do not execute in the
(hard shutdown) OnScan OnScan event of a Server 2 failure.
Graceful shutdown | Active Down Standby Active Startup scripts do not execute. The
of Server 1 platform |OnScan OFFscan Active engine shuts down, Standby
or engine using engine previously started and now
ocMC goes to active but remains OFFscan.
Graceful shutdown | Active Active Standby Down Startup scripts do not execute.
of Server 2 platform |OnScan OnScan Shutdown of Server 2 has no affect on
or engine using operations. Server 1 continues
OoCMC running OnScan.
Start Server 1 only Down Active Down Down Startup script executes when Primary
OnScan Engine starts.
Start Server 2 Active Active Down Standby Startup scripts execute when the
(Server 1 running) OnScan OnScan Backup engine starts on Server 2 (runs
as Standby). Server 1 continues
running OnScan.
Undeploy Active Down Standby Down Startup scripts do not execute during
OnScan an undeploy operation.

OnScan Scripts

OnScan scripts are called the first time an AppEngine calls this object to execute after the object’s scan state
changes to OnScan. The OnScan method initiates local object attribute values and provides more flexibility in the
creation of .NET or COM objects.

Attributes that are off-engine are not available to the OnScan method.
OnScan Scripts for Redundant AppEngines

This section outlines whether or not the script will run under various scenarios, including including deploy,
forced failover, system failure, system startup, and undeploy operations.

The selected redundancy mode, Legacy or Run Warm, does not change the behavior of OnScan scripts for
redundant engines. For both Legacy and Warm Redundancy modes:

¢ When failover occurs, OnScan scripts are triggered when the Active engine goes OnScan.

* OnScan scripts are NOT triggered when the Standby engine goes OnScan.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 15

AV=VA

AVEVA™ Scripting
Chapter 1 — Common Scripting Environment

Both Redundancy

Primary Engine (Server

Backup Engine (Server

OnScan Script

Modes 1) 2)
. Initial Initial . .
Action State End State State End State |Script Execution
Deploy Down Active Down Standby OnScan scripts execute when the
OnScan Active Engine transitions to OnScan.
Forced Failover Active Standby Standby Active OnScan scripts execute when the
OnScan OnScan Backup Engine transitions to OnScan.
Server 1 Failure Active Down Standby Active OnScan scripts execute when the
(hard shutdown) OnScan OnScan Backup Engine transitions to OnScan.
Server 2 Failure Active Active Standby Down OnScan scripts do not execute in the
(hard shutdown) OnScan OnScan event of a Server 2 failure (no state
change for Server 1).
Graceful shutdown | Active Down Standby Active OnScan scripts do not execute when
of Server 1 platform |OnScan OFFScan |the OCMC shuts down a platform or
or engine on Server Active Engine on Server 1. The
1 using OCMC Standby Engine on Server 2 remains
OFFscan.
Graceful shutdown | Active Active Standby Down OnScan scripts do not execute when
of Server 2 platform |OnScan OnScan the OCMC shuts down a platform or
or engine using Standby Engine on Backup Server 2.
oCcMC The Active Engine on Server 1 remains
running OnScan.
Start Server 1 only Down Active Down Down OnScan scripts execute when the
OnScan primary engine on Server 1 starts and
transitions to its prior state of Active
OnScan.
Start Server 2 Active Active Down Standby OnScan scripts do not execute when
(Server 1 running) OnScan OnScan the Backup Engine starts (state of the
active engine running on Server 1
does not change).
Undeploy Active Down Standby Down OnScan scripts do not execute during
OnScan an undeploy operation.

Execute Scripts

Execute scripts are called each time the AppEngine performs a scan and the object is OnScan.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved.

Page 16

_AV — VA AVEVA™ Scripting
— Chapter 1 — Common Scripting Environment

The Execute script method is the workhorse of the scripting execution types. Use the Execute method for your
run-time scripting to ensure that all attributes and values are available to the script.

If the Quality check-box is checked, the Execute method is similar to InTouch® scripts with the following
conditional trigger types:

¢ Periodic: When going OnScan, a script with a periodic trigger executes immediately (at the next scheduled
scan period of the AppEngine). It then executes periodically whenever the elapsed time evaluates as true.

¢ Data Change: Executes when a data value or quality changes between scans.

For the following trigger types, data changes between each scan are not evaluated, only the value at the
beginning of each script is used for evaluation purposes. For example, if a Boolean attribute changes from True
to False to True again during a scan cycle, this change is not evaluated as a data change as the value is True at the
beginning of each scan cycle.

e OnTrue: Executes if the expression validates from a false on one scan to a true on the next scan.
¢ OnFalse: Executes if the expression validates from a true on one scan to a false on the next scan.

These scripts also have time-based considerations. A trigger period of 0 means that the script executes every
scan.

Time-based scripts, WhileTrue, WhileFalse, and Periodic are evaluated and executed based on the elapsed time
from a timestamp generated from the previous execution, not on an elapsed time counter. It is possible that a
change in the system clock can change the interval between execution of these scripts.

¢ WhileTrue: Executes scan to scan as long as the expression validates as true at the beginning of the scan.
¢ WhileFalse: Executes scan to scan as long as the expression validates as false at the beginning of the scan.

For example, a periodic script is set to run every 60 minutes. The script executes at 11:13 AM. We expect it to
execute 60 minutes later at 12:13 PM. However, a time synchronization event occurred and the node’s time is
adjusted from 11:33 AM to 11:30 AM.

The script still executes when the system time reaches 12:13 PM. But because of the time change, the actual
(True) time period that elapsed between executions is 63 minutes.

Execute Scripts for Redundant AppEngines

This section outlines whether or not the script will run under various scenarios, including including deploy,
forced failover, system failure, system startup, and undeploy operations.

The selected redundancy mode, Legacy or Run Warm, does not change the behavior of Execute scripts for
redundant engines. For both Legacy and Warm Redundancy modes:

¢ The Active engine is triggered on execute.

¢ The Standby engine is NOT triggered on execute.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 17

AV=VA

AVEVA™ Scripting
Chapter 1 — Common Scripting Environment

Both Redundancy

Primary Engine (Server

Backup Engine (Server

Execute Script

Modes 1) 2)
. Initial Initial . .
Action State End State State End State |Script Execution
Deploy Down Active Down Standby Execute scripts run after the Active
OnScan Engine transitions to OnScan, at the
next scheduled scan period of the
AppEngine.
Force Failover Active Standby Standby Active Execute scripts run after the Standby
OnScan OnScan Engine transitions to OnScan, at the
next scheduled scan period of the
AppEngine.
Server 1 Failure Active Down Standby Active Execute scripts run after the Standby
(hard shutdown) OnScan OnScan Engine transitions to OnScan, at the
next scheduled scan period of the
AppEngine.
Server 2 Failure Active Active Standby Down Execute scripts run at the next
(hard shutdown) OnScan OnScan scheduled scan period of the
AppEngine.
Graceful shutdown | Active Down Standby Active Execute scripts do not run when the
of Server 1 platform |OnScan OFFScan | OCMC shuts down a platform or
or engine using Active Engine on Server 1. The
ocMC Standby Engine on Server 2 remains
OFFscan.
Graceful shutdown | Active Active Standby Down Execute scripts do not run when the
of Server 2 platform |OnScan OnScan OCMC shuts down a platform or
or engine using standby engine on Backup Server 2.
ocMC The Active Engine on Server 1 remains
running OnScan.
Start Server 1 only Down Active Down Down Execute scripts run after the Active
OnScan Engine transitions to OnScan, at the
next scheduled scan period of the
AppEngine.
Start Server 2 Active Active Down Standby Execute scripts run at the next
(Server 1 running) OnScan OnScan scheduled scan period of the
AppEngine.
Undeploy Active Down Standby Down Execute scripts do not run during an
OnScan undeploy operation.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved.

Page 18

AVEVA™ Scripting
Chapter 1 — Common Scripting Environment

AV=VA

OffScan Scripts

OffScan scripts are called when the object is taken OffScan. This script type is primarily used to clean up the
object and account for any needs to address as a result of the object no longer executing.

If an object is taken OffScan, either directly, or indirectly because its engine is taken OffScan, all in-progress

asynchronous scripts for that object are requested to shut down by setting a Boolean shutdown attribute for the
script to true. A well-written script checks this attribute before and after time-consuming operations. If the script
takes more than 30 seconds to complete, a warning appears in the logger that the script is not responding to the

shutdown command. However, the script is allowed to complete and is not terminated by force. This all takes
place on the engine’s main thread and could potentially hang the engine. During this time, the script might also
time out and as a result exit before executing all its logic.

OffScan Scripts for Redundant AppEngines

This section outlines whether or not the script will run under various scenarios, including including deploy,

forced failover, system failure, system startup, and undeploy operations.

The selected redundancy mode, Legacy or Run Warm, does not change the behavior of OffScan scripts for
redundant engines. For both Legacy and Warm Redundancy modes:

¢ When failover occurs, OffScan scripts are triggered when the Active engine goes OffScan.

e OffScan scripts are NOT triggered when the Standby engine goes OffScan.

Both Redundancy Primary Engine (Server | Backup Engine (Server |OffScan Script
Modes 1) 2)
. Initial Initial . .
Action State End State State End State |Script Execution
Deploy Down Active Down Standby OffScan scripts do not execute during
OnScan a deploy operation.
Forced Failover Active Standby Standby Active OffScan scripts execute when the
OnScan OnScan Backup engine transitions to OffScan.
Server 1 Failure Active Down Standby Active OffScan scripts do not execute when
(hard shutdown) OnScan OnScan Server 1 has a hard shutdown.
Server 2 Failure Active Active Standby Down OffScan scripts do not execute in the
(hard shutdown) OnScan OnScan event of a Server 2 failure (no state
change for Server 1).
Graceful shutdown | Active Down Standby Active OffScan scripts execute when the
of Server 1 platform |OnScan OFFScan | OCMC shuts down a platform or active
or engine using engine on Server 1. The Standby
OoCcMC engine on Server 2 transitions from
Standby to Active Offscan.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved.

Page 19

A V — VA AVEVA™ Scripting
— Chapter 1 — Common Scripting Environment

Both Redundancy Primary Engine (Server | Backup Engine (Server |OffScan Script
Modes 1) 2)
. Initial Initial . .

Action State End State State End State |Script Execution

Graceful shutdown |Active Active Standby Down OffScan scripts do not execute when

of Server 2 platform |OnScan OnScan the OCMC shuts down a platform or

or engine using standby engine on Backup Server 2.

ocMmC

Start Server 1 only |Down Active Down Down OffScan scripts do not execute when

OnScan the Primary Engine on Server 1 starts

and transitions to its prior state of
Active OnScan.

Start Server 2 Active Active Down Standby OffScan scripts do not execute when

(Server 1 running) OnScan OnScan the Backup engine starts (state of the
active engine running on Server 1
does not change).

Undeploy Active Down Standby Down OffScan scripts execute during an

OnScan undeploy operation when the Active

Engine goes OffScan before it shuts
down.

Shutdown Scripts

Shutdown scripts are called when the object is about to be removed from memory, usually as a result of the
AppEngine stopping. Shutdown scripts are primarily used to destroy COM objects and .NET objects and to free
memory.

Shutdown Scripts for Redundant AppEngines

There are certain considerations that you must take into account when writing a Shutdown script that will run on
redundant AppEngines. This section outlines whether or not a script will be executed under various scenarios,
including including deploy, forced failover, system failure, system startup, and undeploy operations.

Redundant engines can be set to run in either Legacy Mode or Run Warm Mode. Shutdown scripts for
redundant engines may operate differently, depending on the selected redundancy mode.

Note: New redundant engines default to Run Warm Mode. Redundant engines in migrated galaxies default to
Legacy Mode.

Shutdown scripts for redundant engines may operate differently, depending on which redundancy mode is
selected.

¢ Legacy mode (RunWarm attribute is disabled): In Legacy mode, the Standby Engine does not start until
failover occurs. This will result in longer failover times when compared with Run Warm Mode. Highlighted
text indicates where there is a difference in script execution between Legacy mode and Warm Redundancy
mode.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 20

AV=VA

AVEVA™ Scripting
Chapter 1 — Common Scripting Environment

Legacy Mode Primary Engine (Server |Backup Engine (Server |Shutdown Script

1) 2)
. Initial Initial . .
Action State End State State End State |Script Execution
Deploy Down Active Down Standby Shutdown scripts do not execute
OnScan during a deploy operation.

Forced Failover Active Standby Standby Active Shutdown scripts execute when the
OnScan OnScan Primary Engine shuts down.

Server 1 Failure Active Down Standby Active Shutdown scripts do not execute in

(hard shutdown) OnScan OnScan the event of a hard shutdown.

Server 2 Failure Active Active Standby Down Shutdown scripts do not execute in

(hard shutdown) OnScan OnScan the event of a hard shutdown.

Graceful shutdown |Active Down Standby Active Shutdown scripts execute when the

of Server 1 platform |OnScan OFFscan Primary Engine shuts down.

or engine using

oCcMC

Graceful shutdown |Active Active Standby Down Shutdown scripts do not execute

of Server 2 platform |OnScan OnScan when Server 2 is shut down. because

or engine using the Backup Engine was never started.

oCcMC

Start Server 1 only Down Active Down Down Shutdown scripts do not execute.

OnScan

Start Server 2 Active Active Down Standby Shutdown scripts do not execute.

(Server 1 running) OnScan OnScan

Undeploy Active Down Standby Down Shutdown scripts execute during an
OnScan undeploy operation as the Active

engine is shut down. In Legacy mode,
the Backup Engine was never started.

¢ Run Warm mode (RunWarm attribute is enabled): In Run Warm mode, the Standby Engine executes Startup
scripts until it becomes active. Highlighted text indicates where there is a difference in script execution

between Legacy mode and Warm Redundancy mode.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved.

Page 21

AV=VA

AVEVA™ Scripting
Chapter 1 — Common Scripting Environment

Warm Redundancy

Primary Engine (Server

Backup Engine (Server

Shutdown Script

Mode 1) 2)
. Initial Initial . .
Action State End State State End State |Script Execution
Deploy Down Active Down Standby Shutdown scripts do not execute
OnScan during a deploy operation.

Forced Failover Active Standby Standby Active Shutdown scripts execute when the
OnScan OnScan Primary Engine shuts down.

Server 1 Failure Active Down Standby Active Shutdown scripts do not execute in

(hard shutdown) OnScan OnScan the event of a hard shutdown.

Server 2 Failure Active Active Standby Down Shutdown scripts do not execute in

(hard shutdown) OnScan OnScan the event of a hard shutdown.

Graceful shutdown |Active Down Standby Active Shutdown scripts execute when the

of Server 1 platform |OnScan OFFscan Primary Engine shuts down.

or engine using

oCcMC

Graceful shutdown |Active Active Standby Down Shutdown scripts execute when Server

of Server 2 platform |OnScan OnScan 2 is shut down because in Run Warm

or engine using mode, the Backup Engine was started

ocMC previously.

Start Server 1 only Down Active Down Down Shutdown scripts do not execute.

OnScan

Start Server 2 Active Active Down Standby Shutdown scripts do not execute.

(Server 1 running) OnScan OnScan

Undeploy Active Down Standby Down Shutdown scripts execute during an
OnScan undeploy operation as the servers

shut down. In Run Warm mode, the
both engines were started and are
now shut down.

Deployment Scripts

Deploying objects is both a critical and a load-intensive process for a Galaxy. Implementing scripting in the
Startup and OnScan methods can adversely affect a Galaxy’s deployment and redundancy performance.

While objects are being deployed, their Startup and, if deployed OnScan scripts are executed. These scripts must
complete within the deployment time-out period for the deployment to be successful.

Placing large numbers of scripts, or scripts that require heavy processing power into the Startup or OnScan script
methods can slow or cause a deployment or failover to fail. In addition to the load that is placed on the system at

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved.

Page 22

A V — VA AVEVA™ Scripting

Chapter 1 — Common Scripting Environment

deployment time, the type of scripting done in the Startup and OnScan methods is also important because these
scripts execute in a sequence.

Deployment Scripts for Redundant AppEngines

When writing a deployment script that will run on redundant AppEngines, be sure to account for the mode in
which the redundant engines will run. Redundant engines can be set to run in either Legacy Mode or Run Warm
Mode.

¢ The selected redundancy mode, Legacy or Run Warm, does not change the behavior of OnScan scripts for
redundant engines.

¢ The selected redundancy mode may change the behavior of Startup scripts. See Startup Scripts for more
information about the differences in script execution between modes.

Note: New redundant engines default to Run Warm Mode. Redundant engines in migrated galaxies default
to Legacy Mode.

During deployment and restart, the Startup and OnScan script methods do not execute objects based on
execution order. Objects are started up and placed on scan based on their alphanumeric tag name within their
hosting Area.

Follow the recommendation below for each type of script method to help determine what scripting practices to
follow in each script method.

Do not place the following types of scripting in the Startup or OnScan methods:
¢ Database access
¢ File system access to .csv, .xml, .txt, and other file types
e Off-object referencing

¢ Dynamic referencing

Working with QuickScript Editor Features

The QuickScript editor provides a number of features to enhance scripting speed and accuracy.

Color Indicators for Script Elements

The QuickScript .NET editor uses different text colors to identify different script elements. The following
table shows the text colors associated with script elements.

Element Color

Keywords Blue

Syntax highlighted while typing.

Comments (both single line and multi- Green

line) Syntax highlighted while typing.

Strings Purple
Syntax highlighted while typing.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 23

AV=VA

AVEVA™ Scripting

Chapter 1 — Common Scripting Environment

Element

Color

Function names, numeric constants,
operators, semicolons, dim variables,
alias variables, and so on

Black

See descriptions for Attribute names
and Reserved words.

Attributes, InTouch Tags, Reference
Strings

Maroon, bold face

Reserved words

Red, non-bold face

.NET type names

Teal, non-bold face

Autocomplete

QuickScript autocomplete incorporates several features for use while authoring object and client scripts:

* Provides an autocomplete Attribute reference when you type a generic object name, such as "me." Run-time
attributes appear in an autocomplete list box. Typing "InTouch:" displays an autocomplete list of tagnames
from the most recently selected ViewApp template.

* Provides method parameter help in an autocomplete list box including context-specific suggestions covering
definitions, keywords, script elements, and programmatic constructs such as try ... catch or while ...

endwhile.

¢ Automatic word completion of Attribute references, methods, programmatic constructs, and other script

elements.

These features serve as convenient documentation of method parameters and scripting syntax as well as an

enhanced input method.

Autocomplete displays a context-sensitive list of options for script elements, keywords, object and
attribute names, and programmatic constructs. Press Ctrl+space to display all available autocomplete
options and variables for the selected location in the script. You can identify the context from the icons

displayed with the list items.

Icon Represents

MxBoolean attribute

MxInteger attribute

MxFloat attribute

MxDouble attribute

N B @ &

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved.

Page 24

AVEVA™ Scripting

Chapter 1 — Common Scripting Environment

Represents

MxString attribute

MxTime attribute

MxElapsedTime attribute

MxStatus attribute

MxDataTypeEnum attribute

MxSecurityClassification attribute

Icon
:.: l.,
4
I"‘@ MxReference attribute
2t
-

L_.j

MxDataQuality attribute

MxQualifiedEnum attribute

MxQualifiedStruct attribute

MxInternationalizedString attribute

S @O

.Net Method

&

L]
o

%

.Net Property

(B

o9
H

.Net Field or Variable

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved.

Page 25

_AV:VA AVEVA™ Scripting

Chapter 1 — Common Scripting Environment

Icon Represents

.Net Namespace

.Net Struct

.Net Class

L8|

.Net Interface

':' = .Net Enumeration
"=
on .Net Enum Value

QuickScript Keyword

Contained object name, or any partial attribute name such as a attribute, field
attribute, or primitive that has a dot in the name, or any attribute of Mx type
MxNone, or if there are several type choices among objects and attributes.

© 4

If the attribute cannot be exactly or unambiguously returned, this icon will
appear.

Partial name example: For me.alarm.al, typing "me.alar" will show the blue ball
icon for alarm.

MxNone example: input/output extension attribute WriteValue.

Rectangle

Rounded rectangle

Line

Horizontal or vertical line

5S4+ N 00

Text

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 26

AV=VA

AVEVA™ Scripting
Chapter 1 — Common Scripting Environment

Icon Represents
D Ellipse
Curve

Closed curve

Button

Polygon

OO0 Q£

Polyline

a3l

Connect

Image

¢ | E

Group or embedded symbol

r
4

p

Alarm control

=l

Edit box

Arc

Pie

Chord

Oz 00|/

Circle

Status

Radio buttons

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved.

Page 27

A V — VA AVEVA™ Scripting

Chapter 1 — Common Scripting Environment

Icon Represents
il Checkbox
i‘_Ij Edit box
:j Combo box
3 Calendar
j Date picker

_g List box

Accepting Autocomplete Suggestions

Insert an item at the editor caret from the autocomplete list box—without an end line or tab appended—by
doing one of the following:

¢ Double-click the item.
¢ Highlight (select) the item and press the Enter key or the Tab key.

Type a space, period, comma, open or closed parenthesis, or other punctuation used in the QuickScript .NET
programming language (:; [] =< >-+/ *), and the item highlighted in the autocomplete list box will be inserted
at the editor caret with the additional character appended.

Multi-level Undo and Redo

You can selectively undo a history of changes to your script. The number of changes that can be undone is
limited only by the amount of available memory.

An undone change can be redone. Redo mirrors undo changes.

A single undo typically is comprised of sequences of typing or deleting, which can be interrupted by interaction
with an autocomplete list or by moving the cursor with the mouse, or by clicking elsewhere in the script.

All pending undo and redo actions will be lost if you close the object editor, switch to another script within the
object editor, or switch among Startup, OnScan, Execute, OffScan, and Shutdown scripts.

Dynamic Referencing Considerations

Dynamic reference scripting is one the biggest causes of deployment failures of StartUp and OnScan execution
types.

Rather than placing dynamic referencing scripts in the Startup or OnScan methods, perform dynamic referencing
in the Execute method. There are several advantages to using the Execute method with dynamic reference
scripting:

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 28

AV=VA

Deployment is faster.

Deployment is more reliable.

Deterministic execution order is guaranteed.

Off-object and off-engine attributes are available.

AVEVA™ Scripting
Chapter 1 — Common Scripting Environment

¢ After a failover occurs, the startup of the redundant engine is more stable and can be faster.

To create a simple dynamic reference script example

1. Create a Boolean attribute.

Object Information | Scripts | UDAS | Extensions

UDA name: I0_Tkeml

LDAs:

MWame Data bype: Boolean

IO _Ikeml

IO _Tkemz Category: User writeable
Ref_Daone

Walue
[This is an array

Mumber of elements:

[OTrue fFalse " |

The attribute shows if the referencing script is complete. In this example you create Ref_Done. I0_Iteml and

I0_Item2 are the I/O points referenced in this example.

2. Create the script. The script in this example is called Set_Refs. The script has a trigger type of WhileTrue

with a @ trigger period.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved.

Page 29

AV:VA AVEVA™ Scripting

Chapter 1 — Common Scripting Environment

& Boolean_DO1 * i ? B x
General I Object Information 3Cripts |UDAs I Extensions I Graphics I
% Script name: Set_Refs Corfigure execution order
Scripts: Aliases: '
Mame |st |on |Ex |of [sh |
Set_Refs % Declarations: =k
[Scripts: Execution bype: IExecute j o ey
~ Basics
Expression: Ime.Set_Rer.ExecutionCnt <=zandMe.Ref _Done==False | =h
Trigger type: IWhiIeTrue j I™ | Guality changes =k

Trigger period: IDD:DD:DD.DDDDDDD =5 I Runs asynchronausly !
Deadband: |o.o =N Tirneaut limit: |n ms 4

[~ Historize script state " r Report alarm on execution error '

Priorikys I 5

Inherited scripts: If Me.Set Refs.Execution{nt == Z then

Mame I ot I on I B I of I <h I 'Thizs is where we get the refez.:enc:e .
Me.I0DIteml.InputSource = "DICkject.Topic." + me.Tagname + ".Iteml';
Me.I0DIteml.OutputDest = "DICkject.Topic." + me.Tagname + ".Iteml';
Me.I0Item?.InputSource = "DIObject.Topic." + me.Tagname + ".ItemZ';

Me.I0Item?.0utputDest |="DIObject.Topic.
'Set the Fef Done UDAL to True so that
'this script will not fire again

'unless the Object is deployed

Me .Ref Done = True:

Endif;

+ me.Tagname + ".Item2";

Ling: 7 Col: 24

The script is shown below:

If Me.Set_Refs.ExecutionCnt == 2 then

Me.IOIteml.InputSource = "DIObject.Topic." + me.Tagname + ".Iteml";
Me.IOIteml.OutputDest = "DIObject.Topic." + me.Tagname + ".Iteml";
Me.IOItem2.InputSource = "DIObject.Topic." + me.Tagname + ".Item2";
Me.IOItem2.0OutputDest = "DIObject.Topic." + me.Tagname + ".Item2";
Me.Ref_Done = True;

Endif;

This script allows the system to stabilize after going on scan before setting the references. The script executes on
the first two scans of the object when the Boolean attribute Ref_Done is false.

As the script is executed, a check is made against the execution count. If the count equals 2, the script performs
the referencing operations. After the reference attributes are set on the attributes, the Ref_Done attribute is set
to True. At this point the expression for the script is no longer true.

The three attributes set in this script are checkpointed, eliminating the need to run this script except on
deployment. The next time the object is started, placed on scan, or failed over, there is no need to recreate the
references to the items.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 30

A V — VA AVEVA™ Scripting
— Chapter 1 — Common Scripting Environment

Run-Time Client Script Behavior

In Advanced Communication Management, script references to InTouch tags and object attributes are suspended

from receiving data changes when the application window containing embedded ArchestrA® objects is
minimized in InTouch WindowViewer. Suspending data updates to hidden objects reduces the amount of
network traffic and improves the overall performance of a client application.

While Showing scripts of embedded symbols do not execute during the period when the window containing the
symbols is minimized. Script execution resumes after restoring or maximizing a window that had been previously
closed or minimized.

Opening a Client Application Window

In Advanced Communication Management, when a client application window containing embedded ArchestrA
objects opens in WindowViewer, the following script events occur:

¢ Register all ArchestrA and InTouch references used in embedded symbol scripts, if not registered already.

¢ Advise all ArchestrA and InTouch references in embedded symbol scripts within the window, if not advised
already.

¢ Execute the OnShow script on all embedded symbol scripts within the window.

¢ Execute named scripts if their trigger conditions are met.

Closing a Client Application Window

In Advanced Communication Management, when a client application window containing embedded ArchestrA
objects is closed, the following script events occur:

¢ Execute OnHide scripts of all embedded symbols within the window.
¢ Stop running client scripts.

¢ Unadbvise all ArchestrA and InTouch references in the Window if there are no other open windows using the
references.

¢ Unregister all ArchestrA and InTouch references in the Window if there are no other open windows using the
references.

Minimizing a Client Application Window

In Advanced Communication Management, when an open window containing embedded ArchestrA objects is
minimized in WindowViewer, the following script events occur:

¢ Stop running client scripts associated with ArchestrA objects embedded in the window.

¢ Unadbvise all ArchestrA and InTouch references in the Window if there are no other open windows using the
references.

¢ OnHide scripts of embedded symbols do not execute when a window is minimized.

Maximizing or Restoring a Client Application Window

In Advanced Communication Management, after maximizing or restoring a window from WindowViewer that
had been previously minimized or closed, the following script events occur:

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 31

A V — VA AVEVA™ Scripting

Chapter 1 — Common Scripting Environment

¢ Advise all ArchestrA and InTouch script references in the window, if not advised already.

¢ Execute named scripts if their trigger conditions are met.

Visual Indication of Script Errors

Verification errors in script text are marked with a red "squiggly" underline. The underline appears after
approximately 2.5 seconds of keyboard inactivity.

Hovering over the error with the mouse cursor will display the error message as a tooltip. The tooltip error
message is identical to the message shown when clicking the script verification button.

Note: In addition to error tooltips, the script editor will also display the variable name and type in a tooltip when
hovering over a variable name in the script.

In some cases, more than one error will be underlined. This is not always possible because some errors prevent
the compiler from continuing past the error.

Line Numbers

The script editor displays line numbers in the left margin.
¢ Line numbers of up to four digits will display when the script editor is not zoomed.
¢ The line number may appear clipped for scripts longer than 9999 lines or when the script editor is zoomed.

¢ Use the right-click context menu Go To function to go to a specific line in the script.

Log Functions

QuickScript .NET functions include several log functions to capture and display information in the logger under
different log flags.

e LogCustom()
e LogError()

e LogMessage()
e LogTrace()

e LogWarning()

Important: To use the LogCustom function, you must enable Log Custom in the Operations Control
Management Console (OCMC) Log Flag Editor. To use the LogTrace function, you must enable Log Trace in
the OCMC Log Flag Editor.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 32

AV=VA

Chapter 2

QuickScript .NET Functions

For information about other functions in this category, see third-party documentation.
Keep in mind the following limitations when you use the script functions:

¢ Be aware of the .NET datatypes.

¢ Starting a GUI application from within a server script is not supported.

¢ Although QuickScript supports import libraries built with .NET CLR version 2.0.50727, it does not support any
of the new language features introduced with .NET 2.0, such as generics.

Script Functions

This section describes the script functions available in the HMI/SCADA development environment. The function
documentation is organized into a set of folders that represents the same organization of the functions in the
Script Function Browser.

Also provided are additional references for standard QuickScript .NET variables, control structures, and
operators.

Other Microsoft .NET script functions, are not documented. Refer to Microsoft .NET documentation for
descriptions of the functions.

Graphic Client Functions

Use graphic client functions to hide and show symbols, open and close popup windows, log in and log off users,
or to query custom properties contained in a symbol.

GetCPQuality()

Returns the Quality value of a custom property. This function is available within any Industrial Graphics client
script, but may not be supported by your HMI. For more information, consult your HMI documentation.

Syntax
Int GetCPQuality(String name)

Where String name is the name of the custom property whose quality is to be retrieved.

This script function takes the name of a custom property on the symbol. This argument is of type string and it
can be a reference or a constant.

If the custom property is type constant, GOOD is the quality always returned.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 33

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

For use with custom properties only. It does not apply to HMI tags.
Return Value

The GetCPQuality() script function returns a value 0-255 of type Integer, as per the OPC quality standard. 192 is
GOOD.

Example
cp2 = GetCPQuality("cpl");

Where cpl and cp2 are custom properties and the data type of cp2 is Integer.

GetCPTimeStamp()

Returns the time stamp of a custom property. This function is available within any Industrial Graphics client
script.

Syntax
DateTime GetCPTimeStamp(String name)

Where String name is the name of the custom property whose time stamp is to be retrieved.

This script function takes the name of a custom property on the symbol. This argument is of type string and it
can be a reference or a constant.

For use with custom properties only. It does not apply to HMI tags.
Return Value

The GetCPTimeStamp() script function returns the time stamp of the custom property’s current value of type
DateTime. If the custom property value is a constant, then the return value is the time the value was created.

Example
cp2 = GetCPTimeStamp(“"cpl");

Where cpl and cp2 are custom properties and the data type of cp2 is DateTime.

GetReferences()

Returns an XML string of all configured references in the runtime. The string can be saved to an XML file by using
a .NET object.

Category
Miscellaneous

Syntax
stringXml = GetReferences("SymbolName");

Parameter(s)

SymbolName
Name of the symbol or graphic for which references are required.

Default
Empty

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 34

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

Return Value

XML string with the following exported references:

Public Custom Properties

Private Custom Properties with overrides

InTouch tags

Attribute() with InTouch tags

VTQS, if the WinPlatform is deployed

MxReferences with absolute reference

MxReferences with resolved relative references (Me.Value)
Symbol references used in the ShowGraphic() scripts function
Popup symbols launched by ShowSymbol animation

References configured in the SetCustomPropertyValue() scripts function.

Additional Information

The following parameters can be specified for the function:

Empty String ("")

When the GetReferences() is called with an empty string argument, GetReferences() will export the
references in the symbol where GetReferences() is called.

For example, a button with Action Script configured with GetReferences("") in the symbol "s_itagl". When
the button is clicked in the runtime, the references configured in the symbol "s_itagl" will be exported.

Symbol Name used in the InTouch Window

You can use an action script to export the references within the same symbol. In addition, the scripts can be
run from another embedded symbol by specifying the symbol name in the InTouch window. The symbol
name and reference VTQ in the symbol will be exported.

Graphic Element with the Hierarchy; For example: Symbol_c contains a text element — Text1. The method call
will be sXML = GetReferences ("Symbol_c1.Text1");

Examples

Example 1

dim sXml as string;

sXml = GetReferences("");

dim xmlDoc as System.Xml.XmlDocument;
xmlDoc = new System.Xml.XmlDocument();
xmlDoc.LoadXml(sXml);
xmlDoc.Save("C:\\tmp\\StringXML.xm1");

Example 2

dim sXml as string;

sXml = GetReferences("s_itagl");

dim xmlDoc as System.Xml.XmlDocument;
xmlDoc = new System.Xml.XmlDocument();
xmlDoc.LoadXml(sXml);
xmlDoc.Save("C:\\tmp\\s_itagl.xml");

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 35

_AV — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

Example 3

dim sXml as string;

sXml = GetReferences("Tankl.Ellipsel");
dim xmlDoc as System.Xml.XmlDocument;
xmlDoc = new System.Xml.XmlDocument();
xmlDoc.LoadXml(sXml);
xmlDoc.Save("C:\\tmp\\TanklEllipsel.xml");

HideContent()

Closes one or more matching content items within an AVEVA OMI ViewApp. Multiple content items can be
closed if they match the parameters that are specified in the HideContent call. The HideContent() function uses a
subset of the parameters that ShowContent() uses.

The HideContent() function works only within a single level of the layout, and the level is defined by the
SearchScope parameter. By default, SearchScope is "Self," and searches within the layout that has invoked it. This
function is available within any Industrial Graphics client script or AVEVA OMI layout script. SearchScope
parameters other than "Self" constrain the search for content to only layouts that are directly associated with
the Screen Profile, and not a nested layout. (A nested layout is a layout embedded or contained in a pane of
another layout.)

Note: While the HideContent() function is available in object scripts through both IntelliSense and the IDE
function browser, its use in object scripts is not supported.

Category
Graphic Client

Syntax

Dim contentInfo as aaContent.ContentInfo;
contentInfo.Content = “SA_Valve 2Way";
contentInfo.Name ="SA Valve_2Wayl”;
contentInfo.ContentType = “Level_3”;
contentInfo.PaneName ="”Pane 2”;
contentInfo.ScreenName =’Primary”;
contentInfo.SearchScope = aaContent.SearchScope.Self;
HideContent(contentInfo);

Parameter

Contentinfo

The description of the content, along with the location of the content (screen and pane) to be hidden.
Data Type

aaContent.Contentinfo

Examples

Dim contentInfo as aaContent.ContentInfo;
contentInfo.Name = “Symbol21”;
HideContent(contentInfo);

Where "Symbol21" is the Name property of the content shown in the Layout Editor.

Dim contentInfo as aaContent.ContentInfo;
contentInfo.Content = “Symbol_001”;

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 36

AV=VA

AVEVA™ Scripting
Chapter 2 — QuickScript .NET Functions

HideContent(contentInfo);

Where "Symbol_001" is the name of the content as listed in the Graphic Toolbox.

Dim contentInfo as aaContent.ContentInfo;
HideContent(contentInfo);

When ContentInfo does not define any properties in the HideContent call, the nested layout that called it is
hidden. In this case, it works identically to the HideSelf method. See HideSelf() for more information.

If HideContent() with no Contentinfo properties is called from the top level of a layout, it has no effect; that is,
the top level layout is not closed.

Note: Even if you do not define any Contentinfo properties, you must pass the Contentinfo parameter in the
HideContent call (i.e., HideContent (contentInfo)).

Property Definition Data Type Required/
Optional
Content A unique name for an item, either in the String Optional
Graphic Toolbox or associated with an asset,
that specifies the content to be loaded into the
pane. Content can be a symbol, a layout, or
external content.
Additional "Content" is the name of the item within the Graphic Toolbox or associated
information with an asset.
The content names are the names shown in the Graphic Toolbox. The
Properties tab of the Layout and ViewApp editors lists content name as the
Content property.
Relative names, for example, "Me.S1," can also be used to designate content.
Content name must be unique. Application Server does not check for
duplicated names. If Content is duplicated, all content with the same name is
closed.
If the same content item is used in multiple panes of the layout, and the
"Content" property is specified by the HideContent() method, all instances of
the content item are hidden. To hide a single instance of a content item that
appears more than once in the layout, use the "Name" property instead.
Example contentInfo.Content = "UserDefinedObject_001.Symbol 001";
Name The auto-generated (or user-edited) name of a | String Optional
unique content item. The name is created when
the content item is added to a layout pane.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved.

Page 37

AV=VA

AVEVA™ Scripting
Chapter 2 — QuickScript .NET Functions

Additional "Name" must be unique within a layout. Name can be duplicated in nested

information layouts, as long as the name is not duplicated within a nested single layout or
the top level layout.
The content Name property is shown in the Properties tab of the Layout Editor,
and is auto-generated from the Content property, also shown in the Properties
tab. You can edit the Name property.
When Name is specified in a HideContent call, only the uniquely-named
content is closed. If "Content" is specified and the "Name" property is not
specified, all items in the layout with the same content name are hidden. If
both are specified, "Name" has precedence.
contentInfo.Name = "Symbol 011",

Example

ScreenName Specifies the screen that contains the pane with | String Optional
the content to be closed.

Additional ScreenNames are configured in the Screen Profile Editor. See Screen Profiles in

information the System Platform Help for additional information.

Example contentInfo.ScreenName = "Wall";

PaneName Specifies the pane containing the content to be |String Optional
closed.

Additional PaneNames are configured in the Layout Editor. See Layouts in the System

information Platform Help for additional information.

Example contentInfo.PaneName = "Panel";

ContentType Specifies the content type of the content to be | String Optional
closed, for example, "Overview," "Navigation,"
or "Faceplate."

Additional ContentType is matched against the Content Type parameter that can be set

information for a pane in the Layout Editor. ContentType is used to override the actual type
of the specified Content. If ContentType is not specified, Content is examined
for its type of content. See Layouts in the System Platform Help for additional
information about content types.

Example contentInfo.ContentType = "Overview";

SearchScope When ScreenName has not been specified, Enum Optional

SearchScope specifies which screen or screens
will be searched for a pane that matches the
specified PaneName or content type.

The default SearchScope is "Self."

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved.

Page 38

AV=VA

Additional
information

Nested Layout

Example

AVEVA™ Scripting
Chapter 2 — QuickScript .NET Functions

SearchScope is an enum with the following values:

e Self searches for matching content within the panes of the layout from
which the HideContent call was made. If SearchScope is not specified,
"Self" is the default. When SearchScope = Self, the layout that initiated the
call is searched, whether it is the top level layout or a nested (embedded)
layout.

In contrast to "Self," the remaining SearchScope values reference only the
top level layout, not nested layouts.

¢ AllScreens searches for matching content within the panes of all screens in
the top level layout. The search starts with the source screen, then the
primary screen, and then any remaining screens in alphabetical order.

e SourceScreen searches for matching content only within the panes of the
top level layout from which HideContent was called.

e PrimaryScreen searches for matching content only within the panes of the
top level layout of the screen designated in the Screen Profile as the
primary screen.

If SearchScope is Self or is not specified, HideContent searches for a matching
pane within the layout that initiated the HideContent call.

When SearchScope is All, Source, or Primary, or if the ScreenName is specified,
HideContent searches for matching content within the top-level layout only.

contentInfo.SearchScope = aaContent.SearchScope.PrimaryScreen;

Property
Overrides

Additional
information

Not applicable for use with HideContent. Used |NA NA

for ShowContent calls only.

Property overrides are specified as a key-value pair, with the property name
enclosed in quotes. See ShowContent() for more information.

Terms

OwningObject

Additional
Information

Sets the owning object of the content shown by | NA NA

the ShowContent() script function.

OwningObject can be used for relative referencing. Can be a concatenation of
constant strings and reference strings.

Can be browsed using the Display Automation Object Browser, or you can type
the name of the owning object.

Note: The OwningObject property sets references for the graphic, but is not
associated with the GraphicName property if the symbol is part of an Object
Wizard. Therefore, if you are scripting a symbol with an owning object, specify
the owning object name as part of the GraphicName property, for example,
UserDefined_001.Pump_001.

Content type: specifies the type of content represented by a pane.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved.

Page 39

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

Content: the name of a graphic, layout, or external content item as it is listed within the the Graphic Toolbox.
This is displayed as the Content property in the Layout Editor when the content item is added to a layout.

Name: the unique name assigned to an instance of a content item, when it is added to a layout. This is displayed
as the Name property in the Layout Editor when the content item is added to a layout, and can be edited.

Layout: consists of one or more rectangular areas called panes that contain content shown in a ViewApp. A
layout is associated with a screen, or it can be embedded within a pane of another layout.

Embedded or Nested Layout: In the context of ShowContent and HideContent, an embedded layout is a layout
that is placed inside a pane of a containing layout. When SearchScope is "Self" (default), embedded layouts are
searched for content that matches the parameters specified in the ShowContent/HideContent call.

Pane: rectangular area of a layout that can hold a single piece of content.
Primary screen: represents the main screen of a workstation that will show a running ViewApp

Screen Profile: defines the physical characteristics of one or more client workstation screens that will show a
running ViewApp and how these screens are arranged with respect to each other.

Source screen: screen from which ShowContent or HideContent was called.
See Also

ShowContent(), HideSelf()

HideGraphic()

Closes an open graphic pop-up window shown in the ShowGraphic() script with the given identity name.

The HideGraphic() function has been extended to close HMI Windows identified with a given identity name. This
function is available within any Industrial Graphics client script.

Category
Graphic Client

Syntax
HideGraphic(string identity);

Parameter
Identity
The unique name of the instance that shows the graphic.

Examples
HideGraphic("il");

Where "i1" is string ldentity.
HideGraphic("<HMIName>:Windowl");
Where "<HMIName>1" is the string identity.
See Also

ShowGraphic(), HideSelf()

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 40

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

HideSelf()

Closes the displayed graphic or layout for which this script is configured. This script function is available within
any Industrial Graphics client script.

Category
Graphic Client

Syntax
HideSelf();

Remarks
For an Industrial Graphics script, call the script function within the symbol to hide the popup.

Example
HideSelf();

See Also

ShowGraphic(), HideGraphic()

Logoff()

Action script that automatically logs off the current user from an AVEVA OMI ViewApp. Logoff() is for use with
AVEVA OMI only.

Action scripts are graphic animations that are triggered by a user action such as a mouse click.
Category

Miscellaneous

Syntax

LogOff() ;

Parameter

None

Trigger

On Left-Click/Key/Touch Down

Additional Information

A log off button can be added that uses the Logoff() method to allow the user to log off from the HMI/SCADA
application .

Example
Logoff() ;

See Also

ShowLoginDialog()

ShowContent()

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 41

AVEVA™ Scripting
Chapter 2 — QuickScript .NET Functions

AV=VA

Loads a content item into an AVEVA OMI pane. This function is available within an Industrial Graphics client
script or layout script to show the content of pane.

To load a graphic into a modal or modeless popup window, use ShowGraphic(). You can use ShowGraphic() for
both AVEVA OMI and InTouch HMI ViewApps. The ShowContent() method is for AVEVA OMI only.

Note: While the ShowContent() function is available in object scripts through both IntelliSense and the IDE
function browser, its use in object scripts is not supported.

Category
Graphic Client

Syntax

Dim contentInfo as aaContent.ContentInfo;
contentInfo.Content = “SA_Valve_ 2Way”;
contentInfo.Name ="SA Valve_2Wayl”;
contentInfo.ContentType = “Level_3”;
contentInfo.PaneName ="”Pane 2”;
contentInfo.ScreenName = Primary>”’;
contentInfo.SearchScope = aaContent.SearchScope.Self;
ShowContent(contentInfo);

Parameter

Contentinfo

Description of the content to be shown and where to show it (which screen and pane)
Data Type

aaContent.Contentinfo

Example

Show content in a pane

dim contentInfo as aaContent.ContentInfo;

Dim cpValues [2] as aaContent.PropertyOverrideValue;

cpValues[1] = new aaContent.PropertyOverrideValue("CP1", "20", true);
= new aaContent.PropertyOverridevValue("CP2", "Pump.PV.TagName", false);

cpValues[2]

contentInfo

contentInfo

contentInfo

contentInfo.

ShowContent

.Content = "Symboll";
contentInfo.
contentInfo.

Name = "S12";
ContentType = "Overview";

.OwningObject = "Enterprise";
contentInfo.
contentInfo.
.PropertyOverrideValues = cpValues;

PaneName = "Pane 1";
ScreenName = "Wall";

SearchScope = aaContent.SearchScope.PrimaryScreen;

(contentInfo);

aaContent.Contentinfo Properties

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved.

Page 42

AV=VA

AVEVA™ Scripting
Chapter 2 — QuickScript .NET Functions

Contentlinfo is a predefined structure that contains the data members described in the following table.
String properties can be a concatenation of string and/or custom properties.

Note: See "Terms," below, for definitions of Content Type, Layout, Pane, Screen Profile, Primary Screen, and

Source Screen.

Property

Definition Data Type Required/
Optional

Content

Additional
information

Example

A unique name for an item, either in the String Required
Graphic Toolbox or associated with an asset,
that specifies the content to be loaded into the
pane. Content can be a symbol, a layout, or
external content.

"Content" is the name of the item within the Graphic Toolbox or associated
with an asset. It can be a symbol, a layout, or external content item.

Symbol (graphic), layout, and external content names are listed in the Graphic
Toolbox and in the Toolbox tab of the Layout and ViewApp editors. Relative
names, for example, "Me.S1," can also be used to designate content.

If the specified content is already shown, invoking ShowContent again closes
the open content and reopens it.

However, if the content is a symbol and you are using object wizards that
include Symbol Wizard custom property selections, and the symbol has an
owning object, use the symbol's absolute name. This allows the correct symbol
configuration to be shown for the instance. See Owning Object, below, for
more information.

Content name must be unique. Application Server does not check for
duplicated names. If Content is duplicated, open content with the same name
is closed, and the content with the duplicated name is opened in its place.
PropertyOverrides and other ContentInfo parameters are updated with any
new specified values.

If the same content item is used in multiple panes of the layout, and the
"Content" property is specified by the HideContent() method, all instances of
the content item are hidden. To specify a single instance, use the "Name"
property instead.

contentInfo.Content = "UserDefinedObject_001.Symbol 001";

Name

The auto-generated (or user-edited) name of a | String Optional
unique content item. The name is created when
the content item is added to a layout pane.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved.

Page 43

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

Additional "Name" must be unique within a layout. Name can be duplicated in nested

information layouts, as long as the name is not duplicated within a nested single layout or
the top level layout.
If content with the same Name is open within the SearchScope, the matching,
open content is closed. A new instance of the matching content opens in the
pane specified by the ShowContent call.
When Name is specified in a HideContent call, only the uniquely-named
content is closed. If "Content" is specified and the "Name" property is not
specified, all items in the layout with the same content name are hidden.
contentInfo.Name = "Symbol 011",

Example

ScreenName Specifies the screen that contains a pane in String Optional
which to place the content.

Additional ScreenNames are configured in the Screen Profile Editor. See Screen Profiles in

information the System Platform Help for additional information.

Example contentInfo.ScreenName = "Wall";

PaneName Specifies the pane in which to place the String Optional
content.

Additional PaneNames are configured in the Layout Editor. See Layouts in the System

information Platform Help for additional information.

Example contentInfo.PaneName = "Panel";

ContentType Specifies the content type, for example, String Optional
"Overview," "Navigation," or "Faceplate."

Additional ContentType is matched against the Content Type parameter that can be set

information for a pane in the Layout Editor. ContentType is used to override the actual type
of the specified Content. If ContentType is not specified, Content is examined
for its type of content. See Layouts in the System Platform Help for additional
information about content types.

Example contentInfo.ContentType = "Overview";

SearchScope When ScreenName has not been specified, Enum Optional
SearchScope specifies which screen or screens
will be searched for a pane that matches the
specified PaneName or content type.
The default SearchScope is "Self."

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 44

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

Additional SearchScope is an enum with the following values:

information o Self searches for matching content within the panes of the NESTED layout

(an embedded layout) from which the ShowContent call was made. If
SearchScope is not specified, "Self" is the default.

In contrast to "Self," the remaining SearchScope values reference only the
top level layout, not nested layouts.

¢ AllScreens searches for matching content within the panes of all screens in
the top level layout. The search starts with the source screen, then the
primary screen, and then any remaining screens in alphabetical order.

* SourceScreen searches for matching content only within the panes of the
top level layout from which ShowContent was called.

e PrimaryScreen searches for matching content only within the panes of the
screen designated in the Screen Profile as the primary screen.

Nested Layout If SearchScope is Self or is not specified, and ShowContent was called from a
nested (embedded) layout, ShowContent searches for a matching pane within
the nested layout.

When SearchScope is All, Source, or Primary, or if the ScreenName is specified,
ShowContent searches for matching content within the top-level layout only.

Example contentInfo.SearchScope = aaContent.SearchScope.PrimaryScreen;
Property PropertyOverrides sets custom property Property Optional
Overrides overrides if a graphic has been specified by the |Override
Content property. Each override must include ValuePair(]
the custom property name and the override array
value.
Additional Property overrides are specified as a key-value pair, with the property name
information enclosed in quotes.
Example Dim cpValues [2] as aaContent.PropertyOverrideValue;
cpValues[1] = new aaContent.PropertyOverrideValue("CP1", "20",
true);

cpValues[2] = new aaContent.PropertyOverrideValue("CP2",
"Pump.PV.TagName", false);

OwningObject Sets the owning object of the content shown by |String Optional
the ShowContent() script function.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 45

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

Additional Can be a concatenation of constant strings and reference strings.

Information Can be browsed using the Display Automation Object Browser, or you can type

the name of the owning object.

Note: The OwningObject property sets references for the graphic, but is not
associated with the GraphicName property if the symbol is part of an Object
Wizard. Therefore, if you are scripting a symbol with an owning object, specify
the owning object name as part of the GraphicName property, for example,
UserDefined_001.Pump_001.

Example contentInfo.OwningObject = "Enterprise";

Terms
Content type: specifies the type of content represented by a pane.

Content: the name of a graphic, layout, or external content item as it is listed within the the Graphic Toolbox.
This is displayed as the Content property in the Layout Editor when the content item is added to a layout.

Name: the unique name assigned to an instance of a content item, when it is added to a layout. This is displayed
as the Name property in the Layout Editor when the content item is added to a layout, and can be edited.

Layout: consists of one or more rectangular areas called panes that contain content shown in a ViewApp. A
layout is associated with a screen, or it can be embedded within a pane of another layout.

Embedded or Nested Layout: In the context of ShowContent and HideContent, an embedded layout is a layout
that is placed inside a pane of a containing layout. When SearchScope is "Self" (default), embedded layouts are
searched for content that matches the parameters specified in the ShowContent/HideContent call.

Pane: rectangular area of a layout that can hold a single piece of content.
Primary screen: represents the main screen of a workstation that will show a running ViewApp

Screen Profile: defines the physical characteristics of one or more client workstation screens that will show a
running ViewApp and how these screens are arranged with respect to each other.

Source screen: screen from which ShowContent or HideContent was called.
See Also

HideContent()

ShowGraphic()

ShowGraphic()

Shows a graphic within a pop-up window. The ShowGraphic() function has been extended to call InTouch HMI
Windows. This function is available within any Industrial Graphics client script.

Category
Graphic Client
Syntax

Show a graphic within a pop-up window
Dim graphicInfo as aaGraphic.GraphicInfo;

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 46

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

graphicInfo.Identity = "<Identity>";
graphicInfo.GraphicName = "<SymbolName>";
ShowGraphic(graphicInfo);

Call an HMI window

Dim graphicInfo as aaGraphic.GraphicInfo;
graphicInfo@.Identity = "<<HMIName>:WindowName>";
ShowGraphic(graphicInfo);

Parameter
Graphicinfo

Data Type
aaGraphic.Graphiclnfo
Examples

Show graphic within a pop-up window
ShowGraphic (graphicInfo);

Show an HMI window

Dim graphicInfo® as aaGraphic.GraphicInfo;
graphicInfo@.Identity = "<HMIName>:Windowl";
ShowGraphic(graphicInfo®@);

aaGraphic.Graphiclnfo Properties

Any string properties can be a concatenation of strings and/or custom properties.
Identity

A unique name that identifies which instance has opened the graphic.

Data Type
String

Additional Information
Mandatory

The same Identity is used in the HideGraphic() script function to close the pop-up window.

Valid Range

The name cannot contain more than 329 characters.

The name has to contain at least one letter.

Valid characters are alphanumeric and special characters (S, #,).

Example
graphicInfo.Identity = "il1";

GraphicName
The name of the graphic to show.

Data Type
String

Valid Range
The name cannot contain more than 329 characters.
The name has to contain at least one letter.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved.

Page 47

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

Valid characters are alphanumeric and special characters (S, #,).

Additional Information

Mandatory

Browse using your HMI/SCADA application browser, such as the Display Galaxy Browser or equivalent in
your HMI/SCADA software, or directly type the graphic name.

The application name can come from:

¢ Graphic Toolbox, for example:
"Symbol 01"

¢ Instances, absolute or hierarchical, for example:
"Userdefined_001.Symboll", "Userdefined ©01.Pump_001.S1"

¢ Relative reference, for example:
"Me.Symbol 001"

Use an absolute name to specify the symbol name and owning object if you are using an Object Wizard
with Symbol Wizard custom property selections. This allows the correct symbol configuration to be
shown for the instance. See Owning Object, below, for more information.

If you type any invalid character or exceed the character limit, the system shows a warning message at
run time. There is no validation at design time.

The graphic name can be a concatenation of constant strings and reference strings. For
example:"Pump_001" + ".Symbol 001"; cpl + ".Symbol 001", where the value of cpl =
"Pump_001"; or 0bjl.Strl + ".Symbol 001", where the value of 0bj.Strl =
"Pump_001".

Examples

Graphic Toolbox Reference
graphicInfo.GraphicName

"S1";
Absolute Reference
graphicInfo.GraphicName = "OwningObjectName.SymbolName";
OwningObject
The owning object of the graphic shown by the ShowGraphic() script function.

Data Type
String

Default Value
Empty

Additional Information

Optional

Can be a concatenation of constant strings and reference strings.

Can be browsed using the Display Automation Object Browser, or you can type the name of the owning
object.

The OwningObject property sets references for the graphic, but is not associated with the GraphicName property
if the symbol is part of an Object Wizard. Therefore, if you are scripting a symbol with an owning object, specify
the owning object name as part of the GraphicName property, for example, UserDefined _001.Pump_001.

Example
graphicInfo.OwningObject = "UserDefined_001";

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 48

AV=VA

HasTitleBar

Determines if the graphic is shown with a title bar.

Data Type
Boolean

Default Value
True

Example

graphicInfo.HasTitleBar = false;

WindowTitle

Specifies the title shown in the window title bar.

Data Type
String

Default Value
Empty

Valid Range

Limit 1024 characters

Additional Information

Can be a constant string, a reference, or an expression.
If you change the owning object for an AutomationObject graphic, the window title is updated accordingly.
If the WindowTitle parameter is empty, the value of the Identity parameter is shown on the title bar.

Example

graphicInfo.WindowTitle = "Graphicel";

WindowType

Specifies whether window type is modal or modeless.

Data Type
Enum

Default Value
Modeless

Valid Range
0,1

Enumerations

WindowType

Integer

Modal

0

Modeless

1

Examples

graphicInfo.WindowType = aaGraphic.WindowType.<windowtype>;

graphicInfo.WindowType

1;

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved.

AVEVA™ Scripting
Chapter 2 — QuickScript .NET Functions

Page 49

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

HasCloseButton
Determines if the pop-up window has a close button.

Data Type
Boolean

Default Value
True

Example
graphicInfo.HasCloseButton = false;

Resizable
Determines if the pop-up window is resizable.

Data Type
Boolean

Default Value
False

Example
graphicInfo.Resizable = true;

WindowLocation
Specifies the location of the pop-up window.

Data Type
Enum

Default Value

Center

Valid Range

One of 0-12

Enumerations
WindowLocation Integer
Center 0
Above 1
TopLeftCorner 2
Top 3
TopRightCorner 4
LeftOf 5
LeftSide 6
RightSide 7
RightOf 8

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 50

A V — VA AVEVA™ Scripting

Chapter 2 — QuickScript .NET Functions

WindowLocation Integer
BottomLeftCorner 9
Bottom 10
BottomRightCorner 11
Below 12

Additional Information

If you have selected Desktop as the window relative position, Above, LeftOf, RightOf, and Below are invalid.
For more information about the behavior of the WindowLocation parameter, see "Working with the Show/
Hide Graphics Script Functions," in the Creating and Managing Industrial Graphics User Guide.

Examples
graphicInfo.WindowLocation
graphicInfo.WindowLocation

aaGraphic.WindowLocation.<WindowLocation>;
1;

WindowRelativePosition
Specifies the relative position of the pop-up window.

Data Type
Enum

Default Value

Desktop

Valid Range

One of 0-8

Enumerations
WindowRelativePosition Integer
Desktop 0
Window 1
ClientArea 2
ParentGraphic 3
ParentElement 4
Mouse 5
DesktopXY 6
WindowXY 7
ClientAreaXY 8

Examples

graphicInfo.WindowRelativePosition =
aaGraphic.WindowRelativePosition.<WindowRelativePosition>;

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 51

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

graphicInfo.WindowRelativePosition = 1;
RelativeTo
Specifies the size of the pop-up window relative to the graphic, desktop, or customized width and height.

Data Type
Enum

Default Value

Graphic

Valid Range

One of 0-2

Enumerations
RelativeTo Integer
Graphic 0
DeskTop 1
CustomizedWidthHeight 2

Additional Information
If you enter aaGraphic.RelativeTo.CustomizedWidthHeight, you can include the values of the height and
width in the script. Otherwise, the default values are used.

Examples
graphicInfo.RelativeTo
graphicInfo.RelativeTo

aaGraphic.RelativeTo.<RelativeTo>;
1;

X
The horizontal position of the pop-up window.

Data Type
Integer

Default Value
0

Valid Range
-2,147,483,648 through 2,147,483,647

Additional Information

If X is beyond the integer range, an overflow message appears in the Logger at run time.

This parameter is applicable only if the value of the WindowRelativePosition parameter is DesktopXY,
WindowXY, or ClientAreaXy.

Unlike the ShowSymbol animation, there is no boundary for this value.

Examples
graphicInfo.X = 100;

Y

Specifies the vertical position of the pop-up window.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 52

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

Data Type
Integer

Default Value
0

Valid Range
-2,147,483,648 through 2,147,483,647

Additional Information
If Y is beyond integer range, a proper overflow message will appear in the Logger at run time.
This value is applicable only if WindowRelativePosition is DesktopXY, WindowXY, or ClientAreaXy.

Unlike the ShowSymbol animation, there is no boundary for this value.

Examples
graphicInfo.Y = 100;

Width
Specifies the width of the pop-up window.

Data Type
Integer

Default Value
100

Valid Range
0-10000

Additional Information

Applicable only if RelativeTo is CustomizedWidthHeight

You can specify either the height or the width of the pop-up window. The system calculates the other, based
on the aspect ratio of the symbol.

If you enter an out-of-boundary value, the system shows an "Out of range" message at run time. If the value
> 10000, it is set at 10000. If the value < 0, it is set at 0.

Examples
graphicInfo.width = 500;

Height
Specifies the height of the pop-up window.

Data Type
Integer

Default Value
100

Valid Range
0-10000

Additional Information

Applicable only if RelativeTo is the value of the CustomizedWidthHeight parameter.

You can specify either the height or the width of the pop-up window. The system calculates the other, based
on the aspect ratio of the symbol.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 53

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

If you enter an out-of-boundary value, the system shows an "Out of range" message at run time. If the value
> 10000, it is set at 10000. If the value < 0, it is set at 0.

Examples
graphicInfo.height = 500;

TopMost

Sets a value that indicates whether the ShowGraphic appears in the top most z-order window. A ShowGraphic
whose Topmost property is set to true appears above all windows whose TopMost properties are set to false
(same as Windows Task Manager).

Data Type
Boolean

Default Value
False

Additional Information

ShowGraphic windows whose Topmost properties are set to true appear above all windows whose Topmost
properties are set to false. In a group of windows that have the Topmost property set to true, the active
window is the topmost window.

Don't create scripts that launch a non-TopMost Modal dialog from a TopMost dialog. Users will not be able to
interact with the View if the Modal dialog is completely hidden by any TopMost window.

Example
graphicInfo.TopMost = true;

ScalePercentage
Sets the scaling percentage of the pop-up window and the graphic it contains.

Data Type
Integer

Default Value
100

Valid Range
0-1000

Additional Information
If you enter an out-of-boundary value, the system shows an "Out of range" message at run time. If the value
> 1000, it is set at 1000. If the value <0, it is set at 0.

Examples
graphicInfo.ScalePercentage = 150;

KeepOnMonitor
Specifies that a pop-up window appears entirely within the boundaries of an application window.

Data Type
Boolean

Default Value
True

Example

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 54

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

graphicInfo.KeepOnMonitor = true;
StretchGraphicToFitWindowSize
Determines if the graphic is scaled to the current size of the pop-up window.

Data Type
Boolean

Default Value
True

Additional Information
Applicable only if the value of the ScalePercentage parameter is greater than 100.

Examples
graphicInfo.StretchGraphicToFitWindowSize = false;

StretchWindowToScreenWidth
Determines if the pop-up window is scaled to the same width as the screen.

Data Type
Boolean

Default Value
False

Additional Information
Applicable only if the WindowRelativePosition parameter is Desktop, Window, Client Area, ParentGraphic, or
ParentElement.

Examples
graphicInfo.StretchWindowToScreenWidth = true;

StretchWindowToScreenHeight
Determines if the pop-up window is scaled to the same height as the screen.

Data Type
Boolean

Default Value
False

Additional Information
Applicable only if the WindowRelativePosition parameter is Desktop, Window, Client Area, ParentGraphic, or
ParentElement.

Examples
graphicInfo.StretchWindowToScreenHeight = true;

CustomProperties
Sets the custom properties of the symbol being shown.

Data Type
CustomPropertyValuePair[] array

Additional Information
The first three parameters are custom property name, value, and IsConstant.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 55

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

Both custom property and the value can be a constant string, reference, or concatenation of strings.

If the parameter IsConstant = True, the value is treated as a constant. Otherwise, the value is treated as a
reference.

The array index starts at 1.

Examples

Dim cpValues [4] as aaGraphic.CustomPropertyValuePair;

cpValues[1] = new aaGraphic.CustomPropertyValuePair("CP1", 20, true);

cpValues[2] = new aaGraphic.CustomPropertyValuePair("CP2", Pump.PV.TagName, true);
cpValues[3] new aaGraphic.CustomPropertyValuePair("CP3", "CP"+varl, CP2 + "@01" +
".Speed", true);

cpValues[4] = new aaGraphic.CustomPropertyValuePair("CP3", "<HMIName>:Tagl", false);
graphicInfo.CustomProperties = cpValues;

Remarks

Any parameter that has default value in the Graphiclnfo is optional. If no input value specified for these
parameters, the default values are used at run time. Any parameter except the Enum data type can be a
constant, reference, or expression.

For more information, see "Working with the Show/Hide Graphics Script Functions" in the Industrial Graphic
Editor User Guide.

Examples for ShowGraphic

Basic script example:

Dim graphicInfo as aaGraphic.GraphicInfo;
graphicInfo.Identity = "Script_e01";
graphicInfo.GraphicName = "Symbol 001";
ShowGraphic(graphicInfo);

Advanced script example:

Dim graphicInfo as aaGraphic.GraphicInfo;

Dim cpValues [2] as aaGraphic.CustomPropertyValuePair;

cpValues[1] = new aaGraphic.CustomPropertyValuePair("CP1", 20, true);
cpValues[2] = new aaGraphic.CustomPropertyValuePair("CP2", "Pump.PV.TagName", false);
graphicInfo.Identity = "il";

graphicInfo.GraphicName = "S1";

graphicInfo.OwningObject = "UserDefined_001";

graphicInfo.WindowTitle = "Graphicel";

graphicInfo.Resizable = false;

graphicInfo.CustomProperties=cpValues;

ShowGraphic(graphicInfo);

Where "i1" is string Identity and the symbol "S1" contains custom property CP1 and CP2.

See Also

HideSelf()
ShowLoginDialog()

Action script that shows a login dialog box in an AVEVA OMI ViewApp with fields to enter a username and
password. A typical login interface includes a login button that is selected by the user to show the Login dialog
box with fields to enter a username and password. ShowLoginDialog() is for use with AVEVA OMI only.

Action scripts are graphic animations that are triggered by a user action such as a mouse click.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 56

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

Category

Miscellaneous

Syntax

ShowLoginDialog() ;
Parameter

None

Trigger

On Left-Click/Key/Touch Down
Additional Information

A log off button can be added that uses the Logoff() method to allow the user to log off from the HMI/SCADA
application.

Example
ShowLoginDialog() ;

See Also

Logoff()

InTouch Functions

The following InTouch functions can be used within the script editor contained in the Industrial Graphic Editor.
In all functions that specify tag names as parameters, you can use InTouch tags from your InTouch application.

InTouch script functions can be used only in symbol scripts. InTouch script functions do not work in ArchestrA
object scripts. Even though the object script will not work, no error or warning is generated.

Note: Using the Convert to Industrial Graphic option in InTouch scripts may wrongly append the term "InTouch:"
to the script function name. To avoid errors, remove the term "InTouch:" from the script function name.

AddPermission() Function

Assigns a certain InTouch access level to a given user group on the local system or on the domain. When a user
belonging to that group logs on to the InTouch HMI after the AddPermission() function is called, he or she
receives the specified access level.

Category
security

Syntax
DiscreteTag=AddPermission("Domain", "Group", AccesslLevel);

Arguments

Domain
Name of the domain or local computer in which the group is located.

Group
Windows user group.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 57

A V — VA AVEVA™ Scripting

Chapter 2 — QuickScript .NET Functions

Accesslevel
InTouch access level that you want to associate with the given group.

Remarks

Valid for operating system security only. When this function is called, it checks for the presence of the specified
group in the specified domain or workgroup. If successful, TRUE is returned, and the specified Access Level is
associated with the group for subsequent user log ons. In all other cases, (that is, if an invalid value is specified
for any of the arguments) FALSE is returned.

This function is typically configured to run on application startup. It does not affect users that are currently
logged on. Only users that log on after AddPermission() is successfully called receive the access level associated
with their group.

Examples
DiscreteTag=AddPermission("corporate_hqg", "InTouchAdmins", 9000);
DiscreteTag=AddPermission("johns@1l", "InTouchUsers", 5000);

See Also

PostLogonDialog(), InvisibleVerifyCredentials(), IsAssignedRole(), AttemptinvisibleLogon(),
QueryGroupMembership()

AttemptinvisibleLogon() Function

The AttemptlinvisibleLogon() function can be used in a script to log on a user to InTouch using the supplied
credentials. The user is not required to enter a password or user ID.

Category
security

Syntax
DiscreteTag=AttemptInvisibleLogon("UserId", "Password", "Domain");

Arguments

Userld
A valid user account name.

Password
Password of the user.

Domain
Name of the local computer, workgroup, or domain to which the user belongs. This argument applies only if
the current security type is operating system-based.

Return Value

Returns TRUE if authentication is successful. Otherwise, it returns FALSE.
Remarks

An attempt is made to log on to the InTouch HMI using the supplied credentials.

¢ |f the logon attempt succeeds, then TRUE is returned and the SOperatorDomain, $OperatorName,
SAccesslLevel, and $SOperator system tags are updated accordingly.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 58

A V — VA AVEVA™ Scripting

Chapter 2 — QuickScript .NET Functions

¢ If the log on attempt fails, then FALSE is returned, and the currently logged on user (if any) continues to be
the current user.

The Domain argument is only valid for operating system-based security. If ArchestrA security mode is in use and
if ArchestrA security is in turn using operating system-based security, the Userld argument should contain the
fully qualified user name with domain name or computer name.

Examples

When security is operating system-based:
DiscreteTag=AttemptInvisibleLogon("UserId", "Password", "Domain");

When security is either InTouch-based or ArchestrA-based:
DiscreteTag=AttemptInvisibleLogon("UserId", "Password", "");

See Also

PostLogonDialog(), InvisibleVerifyCredentials(), IsAssignedRole(), QueryGroupMembership(), AddPermission()

ChangePassword() Function

Shows the Change Password dialog box, allowing the logged on operator to change his/her password.
Category

security

Syntax
[Result=]ChangePassword();

Return Value

Returns one of the following integer values:

0 = Cancel was pressed.

1 = OK was pressed.

Remarks

If the operator uses a touch screen, the operator can use the alphanumeric keyboard to enter the new password.
Example

The following script can be placed on a button or called from a condition script or data change script.
Errmsg=ChangePassword();

EnableDisableKeys() Function

Enables/disables key filters for the Alt, Escape, and Windows keys.

Category

View

Syntax
EnableDisableKeys(AltKey, EscKey, WinKey);

Parameters

AltKey

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 59

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

Integer to enable or disable key filters for the Alt key:
1 = enable filter (disable Alt key)
0 = disable filter (enable Alt key)

EscKey
Integer to enable or disable key filters for the Escape key:

1 = enable filter (disable Esc key)
0 = disable filter (enable Esc key)

WinKey
Integer to enable or disable key filters for the Windows key:

1 = enable filter (disable Win key)
0 = disable filter (enable Win key)
Remarks

Disabling the Alt key also disables the Win+L key combination (for locking the Windows desktop). Win+L is the
shortcut for another combination of keys that involves the Alt key. Thus, disabling the Alt key also disables the
shortcut for locking the Windows desktop.

Disabling the Esc key disables it for all actions.

Example(s)

EnableDisableKeys(9,0,0); // enable all three keys

EnableDisableKeys(1,1,1); // disable all three keys

EnableDisableKeys(0,0,1); // enable Alt and Escape keys, disable Windows key.

FileCopy() Function

Copies a source file to a destination file and returns a status result. This function may take a longer time to
execute and is executed in multiple stages:

1. FileCopy() function is called and an immediate result is returned, indicating success or failure of the file copy
initialization.

2. FileCopy() function executes the copy procedure in the background, and InTouch scripting continues
execution while the file copying is in progress. You can monitor the file copying progress with an integer tag.

3. FileCopy() function returns a file copy result, indicating success or failure of the file copy procedure.

If the destination folder is not available (i.e. another computer on the network), the function waits for up to 10
seconds to time out, and then posts a message in the Logger.

Note: Do not use the FileCopy() function in asynchronous QuickFunctions.

Syntax
result = FileCopy (sourcefile, destfile, progresstag)

Parameters

sourcefile
Full path and file name of the file to be copied. A literal string value, message tagname, or string expression.
You can use the wildcard characters (* and ?) in this parameter to copy just files matching a specified criteria.
The path name can also be a UNC path name.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 60

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

destfile
Full path and file name (or just path name) of the destination. A literal string value, message tagname, or
string expression. The path name can also be a UNC path.

progresstag
Name of an integer tag enclosed in double quotes that will contain a value indicating the file copy progress.
A literal string value, message tagname (such as a message tag containing the value "IntTag.Name") or string
expression. The values have following meaning:
0 - FileCopy() procedure is still in progress.
1 - FileCopy() procedure has completed successfully.
-1 - FileCopy() procedure completed with errors.

Return Value

A value of -1, 0, or 1 indicating the following:
1 - FileCopy() function successfully called.
0 - Error when calling the FileCopy() function because another FileCopy() procedure is already in progress.
-1 - Error when calling the FileCopy() function because of a non-existent source file or the destination is read
only.

Example(s)

This script copies the file c:\MyData\output.log to the directory d:\archive and renames the file to output.txt.
The progress of the file copy is written to the integer tag Monitor.
Status=FileCopy("c:\MyData\output.log","d:\archive\output.txt", "Monitor");

This script copies all files with file ending .txt in the c:\ root directory to the destination directory c:\Backup.
Status=FileCopy("c:*.txt", "c:\Backup", "Monitor");

This script copies a file whose full path and file name is contained in the message tag LogFile to the destination
directory c:\results\ and renames it to logxxx.txt where xxx is a timestamp.
Status=FileCopy(LogFile, "c:\results\log" + $DateString + $TimeString + ".txt", "Monitor");

FileDelete() Function

Deletes an individual file.

Syntax

result = FileDelete (filename)
Parameters

filename

The path name and file name of the file to delete. A literal string value, message tagname, or string
expression. UNC path names are supported.

Remarks

Do not use the wildcard characters (* and ?) with the FileDelete() function and do not use the FileDelete()
function in asynchronous QuickFunctions.

The FileDelete() function does not delete directories.
Return Value

A value indicating success or failure of the file deletion:
1 - file is deleted successfully

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 61

_AV — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

0 - file is not deleted successfully. Possible causes are attempts to delete a read only or a non-existent file.
Example(s)

This script deletes the file c:\Data.txt and returns 1 if the file was found and deleted successfully.
Status=FileDelete("c:\Data.txt");

FileMove() Function

Moves a source file to a destination file and returns a status result. It can be also used to rename a file. This
function may take a longer time to execute and executes in multiple stages:

1. FileMove() function is called and an immediate result is returned, indicating success or failure of the file
move initialization.

2. FileMove() function executes the move procedure in the background, InTouch scripting continues execution
while the file moving is in progress. You can monitor the file moving progress with an integer tag.

3. FileMove() function returns a file move result, indicating success or failure of the file moving procedure.
Do not use the FileMove() function in asynchronous QuickFunctions.

Syntax
result = FileMove (sourcefile, destfile, progresstag)

Parameters

sourcefile
Full path and file name of the file to be moved. A literal string value, message tagname, or string expression.
You can use the wildcard characters (* and ?) in this parameter to move just files matching a specified
criteria. The path name can also be a UNC path name.

destfile
Full path and file name (or just path name) of the destination. A literal string value, message tagname, or
string expression. The path name can also be a UNC path.

progresstag
Name of an integer tag enclosed in double quotes that will contain a value indicating the file moving
progress. A literal string value, message tagname (such as a message tag containing the value "IntTag") or
string expression. The values have following meaning:

0 - FileMove() procedure is still in progress

1 - FileMove() procedure has completed successfully
-1 - FileMove() procedure completed with errors
Return Value

A value of-1, 0, or 1 indicating the following:
1 - FileMove() function successfully called
0 - Error when calling the FileMove() function because another FileMove() procedure is already in progress
-1 - Error when calling the FileMove() function. Possible errors are attempts to move a non-existent file.

Example(s)

This script moves the file c:\MyData\output.log to the directory d:\archive and renames the file to output.txt.
The progress of the file moving is written to the integer tag Monitor.
Status=FileMove("c:\MyData\output.log","d:\archive\output.txt", "Monitor");

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 62

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

This script moves all files with file ending .txt in the c:\ root directory to the destination directory c:\Backup.
Status=FileMove("c:*.txt", "c:\Backup", "Monitor");

This script moves a file whose full path and file name is contained in the message tag LogFile to the destination
directory c:\results\ and renames it to logxxx.txt where xxx is a timestamp.
Status=FileMove(LogFile, "c:\results\log" + $DateString + $TimeString + ".txt", "Monitor");

FileReadFields() Function

Reads the values contained in a csv file into a series of tagnames. You can use this function to load a set of
tagname values.

Commas are the only supported delimiter.
This function can only be used for synchronous calls.

Syntax
[result =] FileReadFields (filename, offset, starttag, numberoffields)

Parameters

filename
Name of the csv file to read the data from. A literal string value, a message tagname or a string expression.

offset
Location (in bytes) in the file to start reading. A literal integer value, integer tagname, or integer expression.

starttag
Name of the first tagname that receives the first read data item. The tagname must be enclosed with double
guotes and end in a number, such as "MyTag1". A literal string value, message tagname (such as a message
tagname containing the value "MyTag1"), or a string expression.

numberoffields
Number of data items to read from the csv file. A literal integer value, integer tagname, or integer
expression. The first data item is read into the tagname defined in the starttag parameter, subsequent data
items into tagnames with the incremented numeral suffix of the starttag parameter (MyTagl, MyTag2,
MyTags3, ...).

Return Value

Optional new file offset (in byte) after reading the data. This can be used to read the next set of data.
Example(s)

This script reads the values "Flour" to RecipeTagl, 27.23 to RecipeTag2, 14 to RecipeTag3, and 1 to RecipeTag4,
and returns the new file offset—if the csv file c:\set.csv contains the following data: Flour, 27.23,14,1 and if the
following tags are defined: RecipeTagl:message, RecipeTag2:real, Recipe3:integer, RecipeTagd:discrete.
FileReadFields("c:\set.csv",0,"RecipeTagl”,4);

FileReadMessage() Function

Reads a specified number of bytes (or one line) of string data from a file.

Syntax
[result =] FileReadMessage (filename, offset, messagetag, charstoread)

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 63

_AV — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

Parameters

filename
Name of the file to read the data from. A literal string value, a message tagname, or a string expression.

offset
Location (in bytes) in the file to start reading from. A literal integer value, integer tagname, or integer
expression.

messagetag
Message tagname that receives the first line or number of bytes from the file. Enclose the tagname with
double quotes when using the function within the Industrial Graphics Editor Script Editor.

charstoread
Number of bytes to read from the file. Set it to 0 to read until the next line feed (LF) character. A literal
integer value, integer tagname, or integer expression.

Return Value
Contains the new byte position after the read. You can use this for subsequent reads from the file.
Example(s)

This script reads the first line of data in the file c:\Data\File.txt to the message tagname MsgTag.
FileReadMessage ("c:\Data\File.txt",0,MsgTag, 0);
FileReadMessage ("c:\Data\File.txt",0,"InTouch:MsgTag", 0);

FileWriteFields() Function

Writes the values contained in a series of tagnames to a csv file. You can use this function to save a set of
tagname values.

Commas are the only supported delimiter.

Syntax
[result =] FileWriteFields (filename, offset, starttag, numberoffields)

Parameters

filename
Name of the csv file to write the data to. A new file is created if it does not previously exist. A literal string
value, a message tagname, or a string expression.

offset
Location (in bytes) in the file to start writing to. Use -1 to write to the end of the file (append). A literal
integer value, integer tagname, or integer expression.

starttag
Name of the first tagname that contains the first data item to be written. The tagname must be enclosed
with double quotes and end in a number, such as "MyTag1". A literal string value, message tagname (such as
a message tagname containing the value "MyTag1") or a string expression.

numberoffields
Number of data items to write to the csv file. A literal integer value, integer tagname, or integer expression.
The first data item is written from the tagname defined in the starttag parameter to the file, subsequent data
items from tagnames with the incremented numeral suffix of the starttag parameter (MyTagl, MyTag2,
MyTags3, ...).

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 64

A V — VA AVEVA™ Scripting

Chapter 2 — QuickScript .NET Functions

Return Value
Optional new file offset (in byte) after writing the data. This can be used to write the next set of data.
Example(s)

A series of InTouch tags is defined as follows:

Tagname Data Type Value
RecipeTagl Message Flour
RecipeTag2 Real 27.23
RecipeTag3 Integer 14
RecipeTag4 Discrete 1

This script writes the values contained in RecipeTagl to RecipeTag4 to the csv file c:\set.csv.
FileWriteFields("c:\set.csv",0,"RecipeTagl”,4);

So that the file c:\set.csv will contain the following data:
Flour,27.23,14,1

FileWriteMessage() Function
Writes a specified number of bytes (or one line) of string data to a file.

Syntax
[result =] FileWriteMessage (filename, offset, messagetag, Linefeed)

Parameters

filename
Name of the file to write the data to. A literal string value, a message tagname, or a string expression.

offset
Location (in bytes) in the file to start writing to. Set it to -1 to write data to the end of the file (append). A
literal integer value, integer tagname, or integer expression.

messagetag
Message tagname that contains the data to be written to the file.

linefeed
Specifies whether to write a line feed (LF) character after writing the data to the file. Set to 1 to write a line
feed character; otherwise, set it to 0. A literal Boolean value, discrete tagname, or Boolean expression.

Return Value

Contains the new byte position after the write. You can use this for subsequent writes to the file.
Example(s)

This script writes the value of a message tagname MsgTag to the end of the file c:\Data\File.txt.
FileWriteMessage("c:\Data\File.txt",-1,MsgTag,1);

GetAccountStatus() Function

Returns the number of days until the user’s password expires.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 65

_AV — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

Category
security

Syntax
Result=GetAccountStatus(Domain, UserlID);

Arguments

Domain
Name of the domain or local computer in which the user account is located.

UserlD
Windows user account name that is part of the local computer, workgroup, or domain.

Return Value

This function also returns the following values:

Result Description

-1 Account password expired

-2 Account password never expires
-3 Account locked out

-4 Account disabled

-5 Account info failed

Remarks

Use this script function with operating system-based security. Do not use this function with the ArchestrA
security mode.

If the GetAccountStatus() function is used with ArchestrA security, the script attempts to retrieve the account
information directly from the domain controller. This works as long as the ArchestrA Galaxy Repository is using
operating system security with the same domain.

Example(s)

Status = GetAccountStatus("Corporate_ HQ","Operator");
GetNodeName() Function

Returns the node name of the computer.

Syntax
GetNodeName (messagetag, nodenum);

Parameters

messagetag
Message tagname that will contain the node name. Enclose the tagname with double quotes when using the
function within the Industrial Graphics Editor Script Editor.

nodenum
Number of characters to retrieve from the node name. A literal integer value, integer tagname, or integer
expression in the range of 0 to 131.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 66

_AV — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

Example(s)

This script retrieves the node name and assigns it to the NodeName message tagname.
GetNodeName (NodeName,131);

GetNodeName("InTouch:NodeName",131);

InfoAppTitle() Function

Returns the application title or Windows task list name of a specified application that is running.

Syntax
result = InfoAppTitle (appname)

Parameters

appname
Name of the application without the .exe extension. A literal string value, message tagname, or string
expression.

Example(s)

This script returns "Calculator"
InfoAppTitle("calc")

This script returns "Microsoft Excel"
InfoAppTitle("excel™)

InfoDisk() Function

Returns either the total or free space on a local or network disk drive.

Syntax

result = InfoDisk (drive, infotype, trigger);
Parameters

drive

The drive letter for which you want to retrieve information. Only the first character of a string is used. A
literal string value, message tagname, string expression.

infotype
Specifies the information type. A literal integer value, integer tagname, or integer expression with following
possible values:

1 - function returns total size of disk drive (in bytes)

2 - function returns free space of disk drive (in bytes)

3 - function returns total size of disk drive (in kilobytes)
4 - function returns free space of disk drive (in kilobytes)

trigger
A tagname (or expression) that acts as a trigger to recalculate the disk information. If the trigger value
changes the disk information is recalculated. A discrete or analog taname, or a discrete or analog expression.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 67

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

Remarks

The trigger tag only has meaning when the InfoDisk() function is used in an animation display link. If this function
is used in a script, you can specify any literal numeric value, analog tagname, or numeric expression.

Example(s)

Use this script in an animation display link to show the free space of disk drive C and update the information
every minute.
InfoDisk("C", 4, $Minute)

InfoFile() Function

Returns various information on a file or directory.

Syntax

result = InfoFile (filename, infotype, trigger)
Parameters

filename

The full file name or directory name you want to retrieve information about. A literal string value, message
tagname, or string expression. Can also include wildcard characters, such as "*" and "?".

infotype
The type of information you want to retrieve about the specified file or directory. A literal integer value,
integer tagname, or integer expression with following values and meaning:

1 - Existence. The InfoFile() function returns 1 if the file exists, 2 if the file is a directory and 0 if the file or
directory does not exist.

2 - Size. The InfoFile() function returns the file size in bytes.

3 - Creation timestamp. The InfoFile() function returns the time stamp as seconds that have passed since
midnight January 1, 1970. Use the StringFromTimeLocal() function to convert this value to a message timestamp.

4 - Wildcard Search Match. The InfoFile() function returns the number of files that match a specified wildcard
search.

trigger
A tagname (or expression) that acts as a trigger to recalculate the file information. If the trigger value
changes, the file information is recalculated. A discrete or analog taname, or a discrete or analog expression.

Remarks

The trigger tag only has meaning when the InfoFile() function is used in an animation display link. If this function
is used in a script, you can specify any literal numeric value, analog tagname, or numeric expression.

Example(s)

This script returns 1 if the file c:\data\log.txt exists.
InfoFile("c:\data\log.txt",1,$minute)

This script returns 14223 if the file c:\data\log.txt has a file size of 14223 bytes.
InfoFile("c:\data\log.txt",2,$minute)

This script returns 1138245266 if the file c:\data\log.txt was created on January 26, 2006 at 11:14:26 AM.
InfoFile("c:\data\log.txt",3,$minute)

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 68

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

This script returns 14 if there are 14 files in the directory c:\data\ that have a txt ending.
InfoFile("c:\data*.txt",4,$minute)

InfolnTouchAppDir() Function

Returns the current InTouch application directory.

Syntax
result = InfoInTouchAppDir();

Return Value
A message tagname to contain the directory of the currently running InTouch application.
Remarks

The application directory name may be truncated when passed to a message tagname or shown in an animation
link due to the 131 characters limitation.

Example(s)

This script may return c:\documents and settings\user1\my documents\my intouch applications\packaging.
InfoInTouchAppDir()

InTouchVersion() Function

Returns the complete InTouch version number or just parts of it.

Syntax

result = InTouchVersion (infotype);
Parameters

infotype

Specifies how the version information is returned. A literal integer value, integer tagname, or integer
expression with the following meaning:

0- function returns the whole version number

1- function returns just the major version number
2- function returns just the minor version number
3- function returns just the patch level

4- function returns just the build level

Example(s)

Function Possible result
InTouchVersion(0) 10.5.1626.0521.0045.0012
InTouchVersion(1) 10

InTouchVersion(2) 5

InTouchVersion(3) 0

InTouchVersion(4) 1626

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 69

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

InvisibleVerifyCredentials() Function

The InvisibleVerifyCredentials() function can be used in a synchronous QuickScript to verify the credentials of the
given user without logging the user on to the InTouch HMI.

Category
security

Syntax
AnalogTag=InvisibleVerifyCredentials("UserId", "Password", "Domain");

Arguments

Userld
Windows operating system user account name that is part of local computer, workgroup, or domain.

Password
Password for the account.

Domain
The Windows domain for the account.

Remarks

If the supplied combination of user, password, and domain are valid then the corresponding access level
associated with the user is returned as an integer. Otherwise, -1 is returned.

Note: The InvisibleVerifyCredentials() function must be run from a synchronous QuickScript. The function always
returns -1 if run from an asynchronous QuickScript.

This function does not change the currently logged on user. The Domain argument is only valid for operating
system-based security. If ArchestrA security is in use and if ArchestrA security is in turn using operating system-
based security, the Userld argument should contain the fully qualified user name with domain name or
computer name.

Example
AnalogTag=InvisibleVerifyCredentials("john", "Password", "corporate_hq");

See Also

PostLogonDialog(), AttemptinvisibleLogon(), IsAssignedRole(), QueryGroupMembership(), AddPermission()

IsAssignedRole() Function

Determines whether the currently logged on user is a member of the specified user role. Only applies to
ArchestrA security.

Category
security

Syntax
DiscreteTag=IsAssignedRole("RoleName");

Arguments

RoleName
The role associated with an Application Server user.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 70

A V — VA AVEVA™ Scripting

Chapter 2 — QuickScript .NET Functions

Remarks

Valid for ArchestrA security mode only and applies to the currently logged on user. If a user is currently logged on
and has the RoleName role assigned in the Galaxy IDE, then TRUE is returned. Otherwise, FALSE is returned.

Example
DiscreteTag=IsAssignedRole("Administrators");

See Also

AttemptlinvisibleLogon(), PostLogonDialog(), InvisibleVerifyCredentials(), QueryGroupMembership(),
AddPermission()

LaunchTagViewer() Function

You can start Tag Viewer only when WindowViewer is running, and only after Tag Viewer has been enabled in
WindowMaker.

For information about enabling Tag Viewer, see Configuring General WindowViewer Properties in the AVEVA™
InTouch HMI Creating Standards for InTouch HMI Components User Guide.

Syntax
LaunchTagViewer()

Remarks

The LaunchTagViewer() function can be executed from any script type except the application scripts OnStartup
and OnShutdown.

If Tag Viewer has not been enabled in WindowMaker, calling the function will not start Tag Viewer and a warning
message will appear in the logger.

You must have adequate security privileges to start Tag Viewer.

LogonCurrentUser() Function
Logs on to InTouch with a user account that is currently logged on to the Windows operating system.
¢ InTouch configured with OS security: the user is logged on to WindowViewer.

¢ InTouch configured with ArchestrA security: the user must be a member of ArchestrA OS user-based or OS
group-based security.

¢ InTouch configured with ArchestrA OS user-based or OS group-based security and the user account is
configured with smart card credentials: user is logged on using the smart card credentials. The user is logged
off if the smart card is removed from the reader.

Category
security

Syntax
IntegerResult = LogonCurrentUser();

Return Value

Returns -1 and no change to the values assigned to $SOperator, SOperatorName, SOperatorDomain, and
SAccesslevel if the logon fails.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 71

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

Remarks
This function is available only in InTouch scripting, not in ArchestrA client scripting.

Example
IntegerResult = LogonCurrentUser();

See Also

PostLogonDialog(), InvisibleVerifyCredentials(), IsAssignedRole(), AttemptlnvisibleLogon(),
QueryGroupMembership(), AddPermission()

PlaySound() Function
Plays a sound from a wave file or a Windows default sound.

Syntax
Playsound (soundname, flag)

Parameters

soundname
The name of the sound or wave file. A literal string value, message tagname, or string expression. If the
sound is defined as a name, it must be defined in the Win.ini file under the [Sounds] section, for example
MC="c:\test.wav"

flag
Specifies how the sound is played. A literal integer value, integer tagname, or integer expression with the
following meanings:
0 - Play sound one time synchronously (script execution waits until sound has finished playing).
1 - Play sound one time asynchronously (script execution does not wait until sound has finished playing).
9 - Play sound continuously (until the PlaySound() function is called again).

Example(s)

This script plays the sound of the file c:\welcome.wav one time and holds script execution until it has finished

playing.
PlaySound("c:\welcome.wav",9);

This script plays the sound Alert continuously. In the win.ini file [Sounds] section you need to associate the sound
name Alert with a sound file, such as:

Alert=c:\alert.wav.

PlaySound("Alert",9);

PostLogonDialog() Function

Shows the InTouch Logon dialog box and returns TRUE.

Category

security

Syntax
DiscreteTag=PostLogonDialog();

Examples
DiscreteTag=PostLogonDialog();

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 72

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

See Also

InvisibleVerifyCredentials(), AttemptinvisibleLogon(), IsAssignedRole(), QueryGroupMembership(),
AddPermission()

PrintScreen() Function
You can write a script to print the entire WindowViewer screen with the PrintScreen() function.

Syntax
PrintScreen (ScreenOption, PrintOption)

Parameters

ScreenOption
Determines how much of the WindowViewer screen is to be printed. A literal integer value, integer tagname,
or integer expression.

1 - Print the client area, no menus (default)
2 - Print the entire window area, including menus

PrintOption
Determines how the printed image is to be stretched to fit on the printout.

e 1-BestFit:
image is stretched so that it fits either horizontally or vertically on the printout without changing the
aspect ratio. (default)

2 - Vertical Fit:
image is stretched so that it fits vertically on the printout without changing the aspect ratio. The
image may be cut off horizontally.

e 3 - Horizontal Fit:
image is stretched so that it fits horizontally on the printout without changing the aspect ratio. The
image may be cut off vertically.

4 - Stretch to Page:
image is stretched so that it fits horizontally and vertically on the printout. The aspect ratio may
change but the image is not truncated.

Invalid options, including O, default to Best Fit.

Note: Popup windows that extend beyond the WindowViewer screen area are cut off.

Example(s)

This script sends a printout of the current entire WindowViewer screen area without menus to the printer
gueue. The printout contains the screen area stretched so that it fills the printout dimensions.
PrintScreen(1,4);

QueryGroupMembership() Function

Determines whether the currently logged on user is a member of the specified user group. Only applies to
operating system security.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 73

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

Category
security

Syntax
DiscreteTag=QueryGroupMembership("Domain", "Group");

Arguments

Domain
Name of the domain or local computer in which the group is located

Group
Name of the group.

Remarks

Valid for operating system security mode only and applies to the currently logged on user. If a user is currently
logged on and if he or she is part of the group located on the domain, then TRUE is returned. Otherwise, FALSE is
returned.

The QueryGroupMembership() function works with operating system-based security and with ArchestrA security
only when the ArchestrA security is set to operating system-based security.

Examples
DiscreteTag=QueryGroupMembership("corporate_hqg", "InTouchAdmins");
DiscreteTag=QueryGroupMembership("JohnS@1", "InTouchUsers");

See Also

PostLogonDialog(), InvisibleVerifyCredentials(), IsAssignedRole(), AttemptinvisibleLogon(), AddPermission()

ShowHome() Function

Opens the InTouch window(s) you specified in the Home Windows tab in the WindowViewer Properties dialog
box and closes any other windows.

Syntax

ShowHome () ;

Starting a Windows Application

In a script, you can start a Windows application using the StartApp command.

Syntax
StartApp appname;

Parameters

appname
Path and file name of the application you want to start. A literal string value, message tagname, or string
expression.

Note: You need to know the path and file name of the application. If the application is in a directory that is part
of the Windows PATH environment variable, you only need to pass the file name (without path).

Example(s)

This script starts Microsoft Calculator.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 74

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

StartApp "calc"

SwitchDisplayLanguage() Function

Switches the display of visible, static texts and alarm fields in a desired language for which translated strings are
provided.

Category
misc

Syntax
SwitchDisplaylLanguage(LocaleID);

Parameter

LocalelD
The language in which static text strings and alarm fields are to be shown at run time.

Example(s)

In this example, German is the language to be shown at run time.
SwitchDisplaylLanguage(1031);

See Also

SLanguage system tag

TseGetClientld() Function

Returns a string version of the client ID (the TCP/IP address of the client) if the View application is running on a
Terminal Server client. This client ID is used internally to generate SuiteLink server names and logger file names.
Otherwise, the TseGetClientld() function returns an empty string.

Syntax
MessageResult=TseGetClientId();

Example

The client IP address 10.103.202.1 is saved to the MsgTag tag.
MsgTag=TseGetClientID();
TseGetClientNodeName() Function

Returns the client node name if the View application is running on a Terminal Server client assigned a name that
can be identified by Windows. Otherwise, the TseGetClientNodeName() function returns an empty string.

Syntax
MessageResult=TseGetClientNodeName();

Example

The client node name is returned as the value assigned to the MsgTag tag.
MsgTag=TseGetClientNodeName();

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 75

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

TseQueryRunningOnClient() Function

Returns a non-zero integer value if the View application is running on a Terminal Services client. Otherwise, it
returns a zero.

Syntax
Result=TseQueryRunningOnClient();

Return Value
Returns 0 if View is not running on a Terminal Services client.
Example

IntTag is set to 1 if WindowViewer is running on a Terminal Services client.
IntTag=TseQueryRunningOnClient;

TseQueryRunningOnConsole() Function

The TseQueryRunningOnConsole() function can be run from a script to indicate whether the View application is
running on a Terminal Services console.

Syntax
Result=TseQueryRunningOnConsole();

Return Value

Returns a non-zero integer value if the View application is running on a Terminal Services console. Otherwise, the
TseQueryRunningOnConsole() function returns a zero.

Example

IntTag is set to 1 if WindowViewer is running on a Terminal Services console.
IntTag=TseQueryRunningOnConsole();

Math Functions

Use math functions to return the answer to the specified mathematical expression.

In QuickScript, all mathematical operations are calculated internally as double, regardless of the operand data
type. Following standard mathematical rules, the result is always rounded in division operations to maintain
accuracy. Rounding only occurs on the end result, not intermediate values, and the quotient will match the
target data type. This is the standard methodology for SCADA and DCS systems, and provides the data integrity,
precision retention, time stamps, and overall data quality propagation and aggregation needed for these
systems.

If you want to round at each step instead of only at the final result, you can leverage the support built
into QuickScript for .NET libraries and utilize the System.Math.Floor and System.Math.Round methods
to explicitly round the intermediate steps. As an example, consider the following script:

dim dividend as integer;

dim divisor as integer;

dim quotient as integer;

dim remainder as integer;
dividend = 8;

divisor = 3;

LogMessage("Value of dividend =

+ dividend);

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 76

AV=VA

LogMessage("Value of divisor = " + divisor);
quotient = dividend/divisor;
LogMessage("Value of quotient = " + quotient);

remainder = dividend mod divisor;

LogMessage ("Value of remainder = " + remainder);
dividend = divisor*quotient +remainder;
LogMessage ("Value of dividend = " + dividend);

The resultis: 8/3=3

AVEVA™ Scripting
Chapter 2 — QuickScript .NET Functions

If, instead, you want to drop the remainder (not rounding the final result to the nearest integer), you

could add a call to the Math.Floor method and use the following:

dim dividend as integer;

dim divisor as integer;

dim quotient as integer;

dim remainder as integer;
dividend = 8;

divisor = 3;

LogMessage("Value of dividend = " + dividend);

LogMessage("Value of divisor = " + divisor);

// *** Add call to Math.Floor. This drops the remainder rather than rounding the internal

Double result to integer

quotient = System.Math.Floor (dividend/divisor) ;
LogMessage("Value of quotient = " + quotient);
remainder = dividend mod divisor;

LogMessage ("Value of remainder = " + remainder);

dividend = divisor*quotient +remainder;
LogMessage ("Value of dividend = " + dividend);

The resultis: 8 / 3 = 2 (remainder 2)

Abs()

Returns the absolute value (unsigned equivalent) of a specified number.
Category
Math

Syntax
Result = Abs(Number);

Parameter

Number
Any number or numeric attribute.

Examples
Abs(14); ' returns 14
Abs(-7.5); ' returns 7.5

ArcCos()

Returns an angle between 0 and 180 degrees whose cosine is equal to the number specified.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved.

Page 77

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

Category
Math

Syntax
Result = ArcCos(Number);

Parameter

Number
Any number or numeric attribute with a value between -1 and 1 (inclusive).

Examples
ArcCos(1); ' returns ©
ArcCos(-1); ' returns 180

See Also

Cos(), Sin(), Tan(), ArcSin(), ArcTan()

ArcSin()

Returns an angle between -90 and 90 degrees whose sine is equal to the number specified.
Category
Math

Syntax
Result = ArcSin(Number);

Parameter

Number
Any number or numeric attribute with a value between -1 and 1 (inclusive).

Examples
ArcSin(1); ' returns 90
ArcSin(-1); ' returns -90

See Also

Cos(), Sin(), Tan(), ArcCos(), ArcTan()

ArcTan()

Returns an angle between -90 and 90 degrees whose tangent is equal to the number specified.
Category
Math

Syntax
Result = ArcTan(Number);

Parameter

Number
Any number or numeric attribute.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 78

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

Examples
ArcTan(1l); ' returns 45
ArcTan(@); ' returns ©

See Also

Cos(), Sin(), Tan(), ArcCos(), ArcSin()

Cos()

Returns the cosine of an angle in degrees.
Category
Math

Syntax
Result = Cos(Number);

Parameter

Number
Any number or numeric attribute.

Examples
Cos(90); ' returns ©
Cos(@); ' returns 1

This example shows how to use the function in a math equation:
Wave = 50 * Cos(6 * Now().Second);

See Also

Sin(), Tan(), ArcCos(), ArcSin(), ArcTan()

Exp()

Returns the result of the exponent e raised to a power.

Category
Math

Syntax
Result = Exp(Number);

Parameter

Number
Any number or numeric attribute.

Example
Exp(1); ' returns 2.718...

Int()

Returns the next integer less than or equal to a specified number.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 79

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

Category
Math

Syntax
IntegerResult = Int(Number);

Parameter

Number
Any number or numeric attribute.

Remarks
When handling negative real (float) numbers, this function returns the integer farthest from zero.

Examples
Int(4.7); ' returns 4
Int(-4.7); ' returns -5

Log()

Returns the natural log (base e) of a number.
Category
Math

Syntax
RealResult = Log(Number);

Parameter

Number
Any number or numeric attribute.

Remarks
Natural log of 0 is undefined.

Examples
Log(100); ' returns 4.605...
Log(1); ' returns @

See Also

LogN(), Log10()
Log10()

Returns the base 10 log of a number.
Category
Math

Syntax
Result = Logl@(Number);

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 80

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

Parameter

Number
Any number or numeric attribute.

Example
Logle(100); ' returns 2

See Also

Log(), LogN()
LogN()

Returns the values of the logarithm of x to base n.
Category
Math

Syntax
Result = LogN(Number, Base);

Parameters

Number
Any number or numeric attribute.

Base
Integer to set log base. You could also specify an integer attribute.

Remarks
Base 1 is undefined.

Examples
LogN(8, 3); ' returns 1.89279
LogN(3, 7); ' returns 0.564

See Also

Log(), Log10()
Pi()

Returns the value of Pi.
Category
Math

Syntax
RealResult = Pi();

Example
Pi(); ' returns 3.1415926

Round()

Rounds a real number to a specified precision and returns the result.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 81

_AV — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

Category
Math

Syntax
RealResult = Round(Number, Precision);

Parameters

Number
Any number or numeric attribute.

Precision
Sets the precision to which the number is rounded. This value can be any number or a numeric attribute.

Examples

Round(4.3, 1); ' returns 4
Round(4.3, .01); ' returns 4.30
Round(4.5, 1); ' returns 5
Round(-4.5, 1); ' returns -4
Round(106, 5); ' returns 105
Round(43.7, .5); ' returns 43.5

See Also

Trunc()
Sgn()

Determines the sign of a value (whether it is positive, zero, or negative) and returns the result.
Category
Math

Syntax
IntegerResult = Sgn(Number);

Parameter

Number
Any number or numeric attribute.

Return Value
If the input number is positive, the result is 1. Negative numbers return a -1, and O returns a 0.

Examples

Sgn(425); ' returns 1;
Sgn(®); ' returns 0;
Sgn(-37.3); ' returns -1;

Sin()

Returns the sine of an angle in degrees.
Category

Math

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 82

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

Syntax

Result = Sin(Number);
Parameter

Number

Angle in degrees. Any number or numeric attribute.

Examples
Sin(90); ' returns 1;
Sin(@); ' returns 0;

This example shows how to use the function in a math expression:
wave = 100 * Sin (6 * Now().Second);

See Also

Cos(), Tan(), ArcCos(), ArcSin(), ArcTan()

Sqrt()

Returns the square root of a number.

Category
Math

Syntax
RealResult = Sqrt(Number);

Parameter

Number
Any number or numeric attribute.

Example
This example takes the value of me.PV and returns the square root as the value of x:

x=Sqrt(me.PV);

Tan()

Returns the tangent of an angle given in degrees.
Category
Math

Syntax
Result = Tan(Number);

Parameter

Number
The angle in degrees. Any number or numeric attribute.

Examples
Tan(45); ' returns 1;
Tan(@); ' returns 0;

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 83

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

This example shows how to use the function in a math expression:
Wave = 10 + 50 * Tan(6 * Now().Second);

See Also

Cos(), Sin(), ArcCos(), ArcSin(), ArcTan()

Trunc()

Truncates a real (floating point) number by simply eliminating the portion to the right of the decimal point,
including the decimal point, and returns the result.

Category
Math

Syntax
NumericResult = Trunc(Number);

Parameter

Number
Any number or numeric attribute.

Remarks

This function accomplishes the same result as placing the contents of a float type attribute into an integer type
attribute.

Examples
Trunc(4.3); ' returns 4;
Trunc(-4.3); ' returns -4;

See Also

Round()

Miscellaneous Functions

Functions in the miscellaneous group perform a variety of purposes, such as logging data or querying attributes.

ActivateApp()

Restores, minimizes, maximizes, or closes another currently running Windows application.
Category

Miscellaneous

Syntax
ActivateApp(TaskName);

Parameter

TaskName
The task this function activates.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 84

AV=VA

Remarks

AVEVA™ Scripting
Chapter 2 — QuickScript .NET Functions

TaskName is the exact text string, including spaces, that appears on the Task Bar or in Windows Task Manager.
You can see the task name by opening Task Manager.

Example

ActivateApp("Calculator");

Filtering Events

To get only specific events, filters can be introduced before getting events from the event service. The filtering
should be done before the StartRequestingEvent() method is called.

The following datatypes are supported when filtering the events.

e Integer
e Float

e String

e Bool

e DateTime
e Double
e Short

e Array

The following table shows the comparison types that are supported for filtering events.

Comparison Keyword

Description

eq Means EqualTo. Returns all the events matching the filtered criteria.

beginswith Means StartsWith. Returns all the events matching the filtered criteria.
Applies only to string data type filtering

It Means Lesser Than. Applies to all supported data types excluding string.
It does not support arrays.

le Means Lesser or Equal. Applies to all supported data types excluding
string. It does not support arrays.

gt Means Greater Than. Applies to all supported data types excluding
string. It does not support arrays.

ge Means Greater or Equal. Applies to all supported data types excluding
string. It does not support arrays.

between Checks will be made only to paired supplied values. Returns all the

events matching the filtered criteria. It supports numeric and date data
types.

neg, nbegins, nlt, nle,
ngt, nge, nbetween

A keyword 'n' before the comparison keyword Means NOT of.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 85

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

DateTimeGMT()

Returns a number representing the number of days and fractions of days since January 1, 1970, in Coordinated
Universal Time (UTC), regardless of the local time zone.

Category
Miscellaneous

Syntax
Result=DateTimeGMT();

Parameters
None

Example
MessageTag = StringFromTime(DateTimeGMT() * 86400.0, 3);

IsBad()

Returns a Boolean value indicating if the quality of the specified attribute is Bad.
Category
Miscellaneous

Syntax
BooleanResult = IsBad(Attributel, Attribute2, ..);

Parameter(s)

Attributel, Attribute2, ...AttributeN
Names of one or more attributes for which you want to determine Bad quality. You can include a variable-
length list of attributes.

Return Value
If any of the specified attributes has Bad quality, then true is returned. Otherwise, false is returned.

Examples
IsBad(TIC101.PV);
IsBad(TIC101.PV, PIC102.PV);

See Also

IsGood(), IsInitializing(), IsUncertain(), IsUsable()

IsGood()

Returns a Boolean value indicating if the quality of the specified attribute is Good.
Category

Miscellaneous

Syntax
BooleanResult = IsGood(Attributel, Attribute2, ..);

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 86

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

Parameter(s)

Attributel, Attribute2, and so on
Name of the attribute(s) for which you want to determine Good quality. You can include a variable-length list
of attributes.

Return Value
If all of the specified attributes have Good quality, then true is returned. Otherwise, false is returned.

Examples
IsGood(TIC101.PV);
IsGood(TIC101.PV, PIC102.PV);

See Also

IsBad(), IsInitializing(), IsUncertain(), IsUsable()

IsInitializing()

Returns a Boolean value indicating if the quality of the specified attribute is Initializing.
Category

Miscellaneous

Syntax
BooleanResult = IsInitializing(Attributel, Attribute2, ..);

Parameter(s)

Attributel, Attribute2, and so on
Name of the attribute(s) for which to determine Initializing quality. You can include a variable-length list of
attributes.

Return Value
If any of the specified attributes has Initializing quality, then true is returned. Otherwise, false is returned.

Examples
IsInitializing(TIC101.PV);
IsInitializing(TIC101.PV, PIC102.PV);

See Also

IsBad(), IsGood(), IsUncertain(), IsUsable()

[sUncertain()

Returns a Boolean value indicating if the quality of the specified attribute is Uncertain.
Category

Miscellaneous

Syntax
BooleanResult = IsUncertain(Attributel, Attribute2, ..);

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 87

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

Parameter(s)

Attributel, Attribute2, and so on
Name of the attribute(s) to determine Uncertain quality. You can include a variable-length list of attributes.

Return Value
If all of the specified attributes have Uncertain quality, then true is returned. Otherwise, false is returned.

Examples
IsUncertain(TIC101.PV);
IsUncertain(TIC101.PV, PIC102.PV);

See Also

IsBad(), IsGood(), IsInitializing(), IsUsable()

IsUsable()

Returns a Boolean value indicating if the specified attribute is usable for calculations.
Category
Miscellaneous

Syntax
BooleanResult = IsUsable(Attributel, Attribute2, ..);

Parameter(s)

Attributel, Attribute2, ...AttributeN
Name of one or more attributes for which you want to determine unusable quality. You can include a
variable-length list of attributes.

Return Value

If all of the specified attributes have either Good or Uncertain quality, then true is returned. Otherwise, false is
returned.

Remarks

The attributes having Good or Uncertain quality qualifies as usable. In addition, each float or double attribute
cannot be a NaN (not a number).

Examples
IsUsable(TIC101.PV);
IsUsable(TIC101.PV, PIC102.PV);

See Also

IsBad(), IsGood(), IsInitializing(), IsUncertain()

LogCustom()
Writes a user-defined custom flag message in the Log Viewer.
Category

Miscellaneous

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 88

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

Syntax
LogCustom(CustomFlag, msg);

Parameter

CustomFlag
Creates a new log flag based on the first parameter string. The first call creates the custom flag.

msg
The message to write to the Log Viewer. Actual string or a string attribute.

Remarks
The log flag is disabled by default.

The message is always logged under the component "ObjectName.ScriptName". For example,
"WinPlatform_001.scriptl: msg", which identifies what object and what script within the object logged the error.

LogCustom() is similar to LogMessage(), but displays the message in the custom log flag when Log Custom is
enabled.

The parameter help tooltip and Function Browser sample parameter list will show "LogCustom(CustomFlag,
msg)" rather than "LogCustom(CustomFlag, Message)". "Message" is a reserved keyword.

Example
LogCustom(EditBox1.text, "User-defined message.";

This statement writes to the Log Viewer as follows:

10/24/2005 12:49:14 PM ScriptRuntime

<ObjectName.ScriptName>: <LogFlag EditBox1> User-defined message.
LogDataChangeEvent()

Logs an application change event to the application Historian.

The LogDataChangeEvent() function works only in object scripts, not in symbol scripts.
Category

Miscellaneous

Syntax
LogDataChangeEvent (AttributeName, Description, OldValue, NewValue, TimeStamp);

Parameters

AttributeName
Attribute name as a tag name.

Description
Description of the object.

Oldvalue
Old value of the attribute.

NewValue
New value of the attribute.

TimeStamp

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 89

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

The time stamp associated with the logged event. The timestamp can be UTC or local time. The TimeStamp
parameter is optional. The timestamp of the logged event defaults to Now() if a TimeStamp parameter is not
included.

Remarks

A symbol script still compiles if the LogDataChangeEvent() function is included. However, a warning message is
written to the log at run time that the function is inoperable.

Example

This example logs an event when a pump starts or stops with a timestamp of the current time when the event
occurred.

LogDataChangeEvent(TC104.pumpstate, "Pump@4", OldState, NewState);

LogError()

Writes a user-defined error message in the Log Viewer with a red error log flag.

Category

Miscellaneous

Syntax
LogError(msg);

Parameter

msg
The message to write to the Log Viewer. Actual string or a string attribute.

Remarks
The log flag is enabled by default.

The message is always logged under the component "ObjectName.ScriptName". For example,
"WinPlatform_001.scriptl: msg", which identifies what object and what script within the object logged the error.

LogError() is similar to LogMessage(), but displays the message in red.

The parameter help tooltip and Function Browser sample parameter list will show "LogError(msg)" rather than
"LogError(Message)". "Message" is a reserved keyword.

Example
LogError("User-defined error message.");

This statement writes to the Log Viewer as follows:

10/24/2005 12:49:14 PM ScriptRuntime
<ObjectName.ScriptName>: User-defined error message.
LogMessage()

Writes a user-defined message to the Log Viewer.

Category

Miscellaneous

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 90

A V — VA AVEVA™ Scripting

Chapter 2 — QuickScript .NET Functions

Syntax
LogMessage(msg);

Parameter

msg
The message to write to the Log Viewer. Actual string or a string attribute.

Remarks

This is a very powerful function for troubleshooting scripting. By strategically placing LogMessage() functions in
your scripts, you can determine the order of script execution, performance of scripts, and identify the value of
attributes both before they are changed and after they are affected by the script.

Each message posted to the Log Viewer is stamped with the exact date and time. The message always begins
with the component "Tagname.ScriptName" so you can tell what object and what script within the object posted
the message to the log.

Examples
LogMessage("Report Script is Running");

The above statement writes the following to the Log Viewer:

10/24/2005 12:49:14 PM ScriptRuntime <Tagname.ScriptName>:Report Script is Running.
MyTag=MyTag + 10;

LogMessage("The Value of MyTag is " + Text(MyTag, "#"));

LogTrace()

Writes a user-defined trace message in the Log Viewer.

Category

Miscellaneous

Syntax
LogTrace(msg);

Parameter

msg
The message to write to the Log Viewer. Actual string or a string attribute.

Remarks
The log flag is disabled by default.

The message is always logged under the component "ObjectName.ScriptName". For example,
"WinPlatform_001.scriptl: msg", which identifies what object and what script within the object logged the error.

LogTrace() is similar to LogMessage(), but displays the message as Trace when Log Trace is enabled.

The parameter help tooltip and Function Browser sample parameter list will show "LogTrace(msg)" rather than
"LogTrace(Message)". "Message" is a reserved keyword.

Example
LogTrace("User-defined trace message.");

This statement writes to the Log Viewer as follows:
10/24/2005 12:49:14 PM ScriptRuntime

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 91

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

<ObjectName.ScriptName>: User-defined trace message.

LogWarning()

Writes a user-defined error message in the Log Viewer with a yellow warning log flag.
Category

Miscellaneous

Syntax
LogWarning(msg);

Parameter

msg
The message to write to the Log Viewer. Actual string or a string attribute.

Remarks
The log flag is disabled by default.

The message is always logged under the component "ObjectName.ScriptName". For example,
"WinPlatform_001.scriptl: msg", which identifies what object and what script within the object logged the error.

LogWarning() is similar to LogMessage(), but displays the message as a yellow warning message.

The parameter help tooltip and Function Browser sample parameter list will show "LogWarning(msg)" rather
than "LogWarning(Message)". "Message" is a reserved keyword.

Example
LogWarning("User-defined warning message.")

This statement writes to the Log Viewer as follows:
10/24/2005 12:49:14 PM ScriptRuntime
<ObjectName.ScriptName>: User-defined warning message.

SendKeys()

Sends keystrokes to an application. To the receiving application, the keys appear to be entered from the
keyboard. You can use SendKeys() within a script to enter data or send commands to an application. Most
keyboard keys can be used in a SendKeys () statement. Each key is represented by one or more characters, such
as A for the letter A or {ENTER} for the Enter key.

Category
Miscellaneous

Syntax
SendKeys(KeySequence);

Parameter

KeySequence
Any key sequence or a string attribute.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 92

AV=VA

Remarks

AVEVA™ Scripting
Chapter 2 — QuickScript .NET Functions

To specify more than one key, concatenate the codes for each character. For example, to specify the dollar sign
(S) key followed by a (b), enter Sb.

The following lists the valid send key codes for unique keyboard keys:

Key Code

BACKSPACE {BACKSPACE}or {BS}
BREAK {BREAK}
CAPSLOCK {CAPSLOCK}
DELETE {DELETE} or {DEL}
DOWN {DOWN}

END {END}

ENTER {ENTER} or tilde (~)
ESCAPE {ESCAPE} or {ESC}
F1..F12 {F1}..{F12}
HOME {HOME}

INSERT {INSERT}

LEFT {LEFT}

NUMLOCK {NUMLOCK}
PAGE DOWN {PGDN}

PAGE UP {PGUP}

PRTSC {PRTSC}

RIGHT {RIGHT}

TAB {TAB}

upP {UP}

HOME {HOME}

Special keys (SHIFT, CTRL, and ALT) have their own key codes:

Key Code
SHIFT + (plus)
CTRL A (caret)
ALT % (percent)

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved.

Page 93

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

Enhancements to the Microsoft Hardware Abstraction Layer in Windows prevents the SendKeys() function from
operating on some computers.

Examples

To use two special keys together, use a second set of parentheses. The following statement holds down the CTRL
key while pressing the ALT key, followed by p:
SendKeys ("~(%(p))");

Commands can be preceded by the ActivateApp() command to direct the keystrokes to the proper application.

The following statement gives the computer focus to Calculator and sends the key combination 1234:
ActivateApp("Calculator");
SendKeys("~(1234)");

SetAttributeVT()

Sets the value and timestamp of an object attribute. For buffered values, only the last calculated value is
captured for historization.

Category
Miscellaneous

Syntax
SetAttributeVT(Attribute, Value, TimeStamp);

Parameter

Attribute
Name of the object attribute whose value and timestamp are modified. The specified attribute must belong
to the object to which the script is attached.

Value
Value of the attribute, which can be a reference. The quality is always set to Good.

TimeStamp
Timestamp that can be a reference, a variable, or a string interpreted as the computer’s local time or UTC.
The timestamp is converted internally to UTC format before the attribute’s value is sent to the run-time
component.

Remarks

Interim calculated buffered values are NOT historized. Use SetAttributeVT2() if historization of interim values is
needed.

Timestamp can be set only for object attributes that support a timestamp. At compile time, the script cannot
detect whether the attribute specified with the SetAttributeVT() function supports a timestamp or not. No
warning is issued if the attribute does not support a timestamp.

Example
This example sets an integer value and timestamp for an attribute that indicates pump RPM.

SetAttributeVT(me.PV, TC104.PumpRPM, LCLTIME);

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 94

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

SetAttributeVT2()

Sets the value and timestamp of an object attribute. This function is identical to SetAttributeVT(), but
SetAttributeVT2() allows interim calculated data for buffered values to be historized once per scan cycle.

Category
Miscellaneous

Syntax
SetAttributeVT2(Attribute, Value, TimeStamp);

Parameter

Attribute
Name of the object attribute whose value and timestamp are modified. The specified attribute must belong
to the object to which the script is attached.

Value
Value of the attribute, which can be a reference. The quality is always set to Good.

TimeStamp
Timestamp that can be a reference, a variable, or a string interpreted as the computer’s local time or UTC.
The timestamp is converted internally to UTC format before the attribute’s value is sent to the run-time
component.

Remarks
In contrast to SetAttributeVT(), SetAttributeVT2() allows historization of interim calculated buffered values.

Timestamp can be set only for object attributes that support a timestamp. At compile time, the script cannot
detect whether the attribute specified with the SetAttributeVT2() function supports a timestamp or not. No
warning is issued if the attribute does not support a timestamp.

Example

This example sets an integer value and timestamp for an attribute that indicates pump RPM (interim calculated
values for buffered data are historized).

SetAttributeVT2(me.PV, TC104.PumpRPM, LCLTIME);

SetBad()

Sets the quality of an attribute to Bad.
Category
Miscellaneous

Syntax
SetBad(Attribute);

Parameter

Attribute
The attribute for which you want to set the quality to Bad.

Remarks

The specified attribute needs be within the object to which the script is attached.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 95

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

Example
SetBad(me.PV);
See Also

SetGood(), Setlnitializing(), SetUncertain()

SetGood()

Sets the quality of an attribute to Good.
Category
Miscellaneous

Syntax
SetGood(Attribute);

Parameter

Attribute
The attribute for which you want to set the quality to Good.

Remarks

The specified attribute needs to be within the object to which the script is attached.
Example

SetGood(me.PV);

See Also

SetBad(), Setlnitializing(), SetUncertain()

Setlnitializing()

Sets the quality of an attribute to Initializing.
Category

Miscellaneous

Syntax
SetInitializing(Attribute);

Parameter

Attribute
The attribute for which you want to set the quality to Initializing.

Remarks
The specified attribute needs to be within the object to which the script is attached.
Example

SetInitializing(me.PV);

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 96

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

See Also

SetBad(), SetGood(), SetUncertain()

SetUncertain()

Sets the quality of an attribute to Uncertain.
Category

Miscellaneous

Syntax
SetUncertain(Attribute);

Parameter

Attribute
The attribute for which you want to set the quality to Uncertain.

Remarks

The specified attribute needs to be within the object to which the script is attached.
Example

SetUncertain(me.PV);

See Also

SetBad(), SetGood(), Setlnitializing()

SignedAckAll()

SignedAckAll is a script function for ArchestrA graphics to perform an acknowledgment of all the alarms on
ArchestrA attributes or IADAS references within a graphic - optionally requiring a signature depending on
whether any of the indicated alarms is currently waiting for an ACK and falls within a designated priority range. If
so, a user must perform a log-in operation to acknowledge the alarms. This function returns an integer status
indicating success or failure:

¢ zero if the function succeeds
¢ non-zero if the function fails or operation is canceled by the user

SignedAckAll has the similar design-time and runtime behaviors as SignedAlarmAck script function except the
following:

¢ Automatically detects all the ArchestrA alarms and IADAS alarms within a graphic that are waiting for an ACK
e ACK both ArchestrA alarms and IADAS alarms

Category

Miscellaneous

Syntax

int SignedAckAll(String Graphic_Instance_Name,
Boolean Include_Parent_Symbol,

Boolean Signature_Reqd_for_Range,

Integer Min_Priority,

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 97

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

Integer Max_Priority,

String Default_Ack_Comment,
Boolean Ack_Comment_Is_Editable,
String TitleBar_Caption,

String Message Caption

)s

Parameters

Graphic_Instance_Name

¢ The Graphic_Instance_Name is the name of the embedded graphic toolbox symbol or object symbol. For
example, Graphic_Instance_Name = cpl, cpl is a string type of custom property, cpl =
"symbol_0011" or cpl = "Pump001_s11".

¢ The Graphic_Instance_Name also can be the name of a specific graphic element inside a symbol. For
example, "symbol_0011.Text1".

¢ If Graphic_Instance_Name is empty
this script function resides.

, this script function will ack all the alarms of the symbol where

Data Type
String

Valid Range
Limit 1024 characters

Additional Information
Can be a constant string, a reference, or an expression.

Include_Parent_Symbol

Indicates whether all the applicable alarms on all level parent symbols will be acknowledged when
Graphic_Instance_Name is empty. If Graphic_Instance_Name is empty and Include_Parent_Symbol is true, all
the applicable alarms on all level parent symbols of the graphic owning symbol will be acknowledged. If
Graphic_Instance_Name is empty and Include_Parent_Symbol is false, only the applicable alarms on the graphic
owning symbol will be acknowledged. If Graphic_Instance_Name is not empty, Include_Parent_Symbol option
will be ignored.

Data Type
Bool

Additional Information
Can be a constant, a reference, or an expression.

Signature_Reqd_for Range
Indicates whether a signature is required for acknowledging alarms.

Data Type
Bool

Additional Information
Can be a constant, a reference, or an expression.

Min_Priority
Represents the minimum priority value of the range for which the signature is required.

Data Type
Integer

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 98

_AV — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

Valid Range
1-999; must be less than or equal to the Max_Priority value.

Additional Information
Can be a constant, a reference, or an expression.

Max_Priority
Represents the maximum priority value of the range for which the signature is required.

Data Type
Integer

Valid Range
1-999; must be greater than or equal to the Min_Priority value.

Additional Information
Can be a constant, a reference, or an expression.

Default Ack_Comment
Comment to be shown in the Acknowledge Alarms dialog box.

Data Type
String

Valid Range
Limit 200 characters

Additional Information
Can be a constant, a reference or an expression. If the parameter is empty, then no default comment is
shown in the Acknowledge Alarms dialog box.

Ack_Comment Is_ Editable
Indicates whether the run-time user can modify the acknowledgement comment.

Data Type
Bool

Additional Information
Can be a constant, a reference, or an expression. If set to False, the Comment box in the Acknowledge
Alarms dialog box is unavailable.

TitleBar_Caption
Shows a title in the title bar of the Acknowledge Alarms dialog box.

Data Type
String

Valid Range
Limit 1024 characters

Additional Information
Can be a constant, a reference, or an expression. If the TitleBar_Caption is empty, the default title,
Acknowledge Alarms, is shown.

Message_Caption
Shows a customizable message to the run-time user in the Acknowledge Alarms dialog box.

Data Type

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 99

_AV — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

String

Valid Range
Limit 250 characters

Additional Information
Can be a constant, a reference, or an expression. Use the parameter to provide more information on the
alarm to the run-time user. This message is not propagated to the event record.

Return Values
Return Value Data type Description

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 100

AV=VA

AVEVA™ Scripting
Chapter 2 — QuickScript .NET Functions

The status values are as follows:

0 : The function returns a value of O (meaning success) if
the following are all true:

The function parameters were valid
At least one alarm was waiting for an ACK

The user credentials were valid or no credentials
were needed

Note: User permissions are not validated. Thus, a
user may have valid credentials, but not have the
necessary permissions to acknowledge alarms.

The user did not cancel the operation

The function wrote to the .AckMsg Attributes or
the .UNACK IADAS references of the indicated
alarms that currently were waiting for an ACK

Note: A return value of 0 does not indicate that the
alarms are acknowledged, only that the function
wrote to the AckMsg attributes. The alarms may not
be acknowledged if the validated user had
insufficient permissions, or if the alarms were
already acknowledged.

-2 ,-1, 1: See the description of the return status in
SignedAckAll script function. Return status -1 is
applicable only if user canceled the login dialog or
ack comment edit dialog when
Signature_Reqd_for_Range is true or
Ack_Comment_Is_editable is true.

2 : If the Graphic_Instance_Name was not valid at
runtime

3: If the Min_Priority or Max_Priority is out of the
range 1..999, the function writes a message to the
Logger identifying which parameter(s) was out of

range and displaying the actual value(s).

4: If the Min_Priority > Max_Priority, the function writes
a message to the Logger identifying the problem and
displaying the actual values.

status Integer
[]
[]
[]
Example
n =
SignedAlarmAck()

SignedAckAll ("",false,false,1,999,"Ack all by script",false,"","")

Acknowledges one or more alarms on tags or attributes, optionally requiring a signature if any of the indicated
alarms falls within a designated priority range.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved.

Page 101

_AV:VA AVEVA™ Scripting

Chapter 2 — QuickScript .NET Functions

This function is supported only for client scripting and not object scripting.
Category
Miscellaneous

Syntax

int SignedAlarmAck(String Alarm_List,
Boolean Signature_Reqd_for Range,
Integer Min_Priority,

Integer Max_Priority,

String Default_Ack_Comment,

Boolean Ack_Comment_Is_Editable,
String TitleBar_Caption,

String Message Caption

)5
Parameters
Alarm_List

The list of alarms to be acknowledged. The list must be a single text string with each alarm name separated by a
space or a comma.

Data Type
String

Valid Range
Limit 1024 characters

Additional Information

Can be a constant string, a reference, or an expression.

Only alarms on tags or attributes are supported.

If there is any invalid alarm in the list, then none of the alarms are acknowledged.

Examples
Example 1:
"UD1.analog_©001.HiHi"

The collection is represented as a text string, with alarms separated by blanks and/or commas.

Example 2:
"UD1.analog_©@@1.HiHi UD9.x14.dev.major"

Example 3:
"UD1.analog_©@1.HiHi, UD9.x14.dev.major"

Example 4, an array of strings such as:
Pumpl.AlarmArray[1] "Pumpl.Level .HiHi"
Pumpl.AlarmArray[2] "Pumpl.Level.LoLo"

uses the function as follows:
SignedAlarmAck (Pumpl.AlarmArray[1, ...)

The script passes to the function the following single string:
"Pumpl.Level.HiHi, Pumpl.Level.LoLo"

Signature_Reqd_for Range

Indicates whether a signature is required for acknowledging alarms.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 102

_AV — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

Data Type
Bool

Additional Information
Can be a constant, a reference, or an expression.

Min_Priority
Represents the minimum priority value of the range for which the signature is required.

Data Type
Integer

Valid Range
1-999; must be less than or equal to the Max_Priority value.

Additional Information
Can be a constant, a reference, or an expression.

Max_Priority
Represents the maximum priority value of the range for which the signature is required.

Data Type
Integer

Valid Range
1-999; must be greater than or equal to the Min_Priority value.

Additional Information
Can be a constant, a reference, or an expression.

Default Ack_Comment
Comment to be shown in the Acknowledge Alarms dialog box.

Data Type
String

Valid Range
Limit 200 characters

Additional Information
Can be a constant, a reference or an expression.

If the parameter is empty, then no default comment is shown in the Acknowledge Alarms dialog box.

Ack_Comment Is_ Editable
Indicates whether the run-time user can modify the acknowledgement comment.

Data Type
Bool

Additional Information
Can be a constant, a reference, or an expression.
If set to False, the Comment box in the Acknowledge Alarms dialog box is unavailable.

TitleBar_Caption
Shows a title in the title bar of the Acknowledge Alarms dialog box.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved.

Page 103

_AV:VA AVEVA™ Scripting

Chapter 2 — QuickScript .NET Functions

Data Type
String

Valid Range
Limi 1024 characters

Additional Information
Can be a constant, a reference, or an expression.

If the TitleBar_Caption is empty, the default title, Acknowledge Alarms, is shown.
Message_Caption
Shows a customizable message to the run-time user in the Acknowledge Alarms dialog box.

Data Type
String

Valid Range
Limit 250 characters

Additional Information

Can be a constant, a reference, or an expression.

Use the parameter to provide more information on the alarm to the run-time user.
This message is not propagated to the event record.

Return Values

Return values indicate success or failure status. A non-zero value indicates type of failure.

-1 The user canceled the operation.

The function writes a message to the Logger indicating user

cancellation.
-2 No alarms are waiting for acknowledgement.
0 The function is successful and the following are all true:

¢ The function parameters are valid.

* The user credentials are valid (or no credentials are
needed).

¢ The user did not cancel the operation.

¢ Function wrote to the .AckMsg attributes of the indicated
alarms.

1 The function failed due to any error that is not covered by the
other specified return values.

2 One or more parameters were not coerced to the appropriate
data type at run time.

Example: Parameter is a reference with Boolean as the expected
data type. At run time, reference is to a String data type that
cannot be coerced to True or False.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 104

A V — VA AVEVA™ Scripting

Chapter 2 — QuickScript .NET Functions

The function writes a message to the Logger.

3 The Alarm_List parameter was not valid at run time.
¢ String was null, empty or contained no attribute references.

e Contained one or more items that were not valid attribute
references.

¢ Contained one or more attribute references that did not
exist or did not identify valid alarm primitives.

If Alarm_List contains a mixture of valid and invalid
references, the function does nothing. The function does
not attempt to operate on the valid references, and returns
this error status.

4 The Min_Priority or MaxPriority values do not fall within the
range of 1 to 999.

The function writes a message to the Logger indicating which
parameter was out of range and showing the actual value.

5 The Min_Priority value is greater than the Max_Priority value.

The function writes a message to the Logger identifying the
problem and showing the actual values.

Note: A return value of zero does not indicate if the alarms are acknowledged, only that the function wrote to
the AckMsg attributes. The alarms may not be acknowledged due to insufficient permission or if the alarms have
already been acknowledged.

Remarks

For more information about using the SignedAlarmAck() function, see the topic Signature Security for
Acknowledging Alarms, under "Adding and Maintaining Symbol Scripts" in the Creating and Managing Industrial
Graphics User Guide.

Examples
Dim n as Integer;
n = SignedAlarmAck("UD1l.analog_©@1.HiHi UD9.x14.dev.major", true, 1, 250, "Acknowledged
by script”, true, "Acking Tank Alarms", "Acknowledge the tank alarms");

Using an array of strings:
dim arr[2] as String;
arr[1] = "UDl.analog_©01.HiHi";
arr[2] = "UD9.x14.dev.major";
n = SignedAlarmAck(arr[], true, 200, 500, "Acked by script"”, true, "Acking Tank
Alarms", "Please acknowledge the tank alarms.");

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 105

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

SignedWrite()

Performs a write to an AutomationObject attribute that has a Secured Write or Verified Write security
classification.

Category
Miscellaneous

Syntax

int SignedWrite(string Attribute,
object Value,

string ReasonDescription,

Bool Comment_Is_Editable,

Enum Comment_Enforcement,
string[] Predefined_Comment_List

)3

Brackets [] indicate an array.
Parameters

Attribute

The attribute to be updated.

Data Type
String

Additional Information

Can be a constant string, a reference, or an expression.

Supports bound and nested bound references.

For detailed examples of Attribute parameter uses, see the topic Examples of Using the Attribute Parameter
in the SignedWrite() Function under "Managing Symbols" in the Creating and Managing Industrial Graphics
User Guide.

Examples
Example 1:
"UserDefined_001.temp"
Example 2:
"Pumpl5"” + ".valve4"

Example 3:

With UDO_7 containing two string attributes, namestrA and namestrB set to the values "Tank1" and "Tank5"
respectively, the following script writes to Tank1.Level or Tank5.Level according to whether strselect is "A" or "B":
Dim strselect As String;
Dim x As Indirect;
{ logic to set strselect to "A" or "B" }
x.BindTo ("UDO_7.namestr" + strselect);
SignedWrite(x + ".Level", 243, "Set " + x +

Level", true, 0, null);
Value
The value to be written.

Data Type
Object

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 106

_AV — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

Valid Range
Has to match data type of the attribute being updated.

Additional Information
Can be a constant value, a reference, an expression, or NULL if nothing is to be entered.

ReasonDescription
Text that explains the purpose of the target attribute and the impact of changing it.

Data Type
String

Valid Range
Maximum of 256 characters.

Additional Information

Can be a constant string, a reference, or an expression.

The ReasonDescription is passed to the indicated Attribute as part of the write operation. The object also
includes the user’s write comment, if any. A Field Attribute description is used for the ReasonDescription
parameter only if the attribute is a Field Attribute and it has a description (is not null). Otherwise, the Short
Description for the corresponding ApplicationObject is used for the ReasonDescription parameter.

Comment is _Editable
Indicates whether user can edit the write comment.

Data Type
Bool

Additional Information

Can be a constant value, a reference, or an expression.

If set to True: The comment text box is enabled with exceptions. If Comment_Is_Editable is true and if the
Comment_ Enforcement parameter is PredefinedOnly, the comment text box is disabled. At run time, the
user can only select a comment from the predefined comment list.

If the Comment_ Enforcement parameter is not PredefinedOnly, the comment list and box are enabled. You
can select a comment from the comment list and modify it in the comment box.

If the predefined list is empty, the comment list is not shown in the dialog box.

If set to False: The predefined comment list does not appear in the Secured Write or Verified Write dialog
boxes. The editable comment text box is disabled.

Comment_Enforcement
Contains choices of Optional, Mandatory and PredefinedOnly.

Data Type
Enum

Enumerations

Optional =0

The run-time user can enter a comment or leave it blank.

Mandatory =1

The run-time user has to add a comment, either by selecting from the comment list or by entering a
comment in the comment box.

PredefinedOnly = 2

The run-time user can select a comment from the comment list only. The comment text box is disabled.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 107

_AV:VA AVEVA™ Scripting

Chapter 2 — QuickScript .NET Functions

Additional Information
Can be a constant, a reference, or an expression.

Predefined_Comment _List
An array of strings that can be used as predefined comments.

Data Type
String|[]

Valid Range
Maximum of 20 comments, each with a maximum of 200 characters.

Additional Information

The array can be empty (humber of elements is 0).

Can be a constant, a reference, an expression, or NULL if empty. Can reference an attribute that contains an
array of strings.

If no predefined comment is entered, the predefined comment list is disabled at run time.

If Comment_Is_Editable is False, the predefined comment is still placed in the editable comment text box,
but the user cannot modify it at run time.

Return Values
Return values indicate success or failure status. A non-zero value indicates type of failure.
0 The function returns a value of 0 (meaning success) if the
following are all true:
¢ The function parameters were valid.

¢ The write operation was successfully placed on the queue
for Secured and Verified Writes.

¢ [f the user cancels the operation, a message is written to the
Logger indicating user cancellation.

1 The function failed due to any error that is not covered by the
other specified return values. This includes any error that is not
covered by the other specified return values. If there is a failure,
a specific message is logged in the Logger.

2 One or more parameters were not coerced to the appropriate
data type at run time.

Example: Parameter is a reference with Boolean as the expected
data type. At run time, reference is to a String data type that
cannot be coerced to True or False. The function returns this
value and writes a message to the Logger.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 108

_AV — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

3 The attribute parameter was not valid at run time.

e Attribute string was null, empty, or contained no attribute
reference.

e Attribute string contained an item that was not a valid
attribute reference.

e Attribute string contained an attribute reference that did
not exist.

e Attribute string contained an attribute reference that was
not of the Secured Write or Verified Write security
classification.

The function writes a message to the Logger identifying the
error and the invalid attribute string.

4 The Comment_Enforcement parameter value was out of the
range of valid enumerators.

Remarks
The SignedWrite() function is supported only for client scripting and not for object scripting.

A return value of 0 does not indicate whether the attribute was updated, only that the function placed an entry
on the queue to write to the attribute. The operator may decide to cancel the operation after the Secured Write
or Verified write dialog box is presented. In this case the attribute is not updated and a message is placed in the
Logger indicating that the user canceled the operation. Even if the user enters valid credentials and clicks OK, the
attribute still might not have been updated because of inadequate permission or data coercion problems.

The SignedWrite() function supports the custom property passed as the first parameter with opened and closed

quotation marks, "".

If you configure the custom property CP as shown in the following script, the function attempts to resolve CP and
determine if it has a reference. If it has a reference, then the reference is retrieved and the write is performed on
the reference.

SignedWrite("CP", value, reason, editable, enforcement, null);

For more information about using the SignedWrite() function, see the topic Working with the SignedWrite()
Function for Secured and Verified Writes under "Managing Symbols" in the Creating and Managing Industrial
Graphics User Guide.

Examples
SignedWrite ("UserDefined_001.temp", 185, "This will change the oven temperature”, true,
1, null);

The following example shows the user an array of predefined comments:

Dim n as Integer;

n = SignedWrite("UserDefined 001.temp"”, 185, "This will change the oven temperature”,
true, 1, UserDefined ©001.0venCommentArray[]);

where UserDefined_001.0venCommentArray is an attribute containing an array of strings.

WriteStatus()

Returns the enumerated write status of the last write to the specified attribute.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 109

AV=VA

Category

Miscellaneous

Syntax

Result = WriteStatus(Attribute);

Parameter

Attribute

The attribute for which you want to return write status.

Return Value

The return statuses are:

MxStatusOk

MxStatusPending
MxStatusWarning
MxStatusCommunicationError
MxStatusConfigurationError
MxStatusOperationalError
MxStatusSecurityError
MxStatusSoftwareError

MxStatusOtherError

Remarks

AVEVA™ Scripting
Chapter 2 — QuickScript .NET Functions

If the attribute has never been written to, this function returns MxStatusOk. This function always returns
MxStatusOk for attributes that do not support a calculated (non-Good) quality.

Example

WriteStatus(TIC101.SP);

WW<Control()

Restores, minimizes, maximizes, or closes an application.

Category

Miscellaneous

Syntax

WwControl (AppTitle, ControlType);

Parameters

AppTitle

ControlType

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved.

The name of the application title to be controlled. Actual string or a string attribute.

Page 110

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

Determines how the application is controlled. Possible values are shown below. These actions are identical to
clicking on their corresponding selections in the application's Control Menu. Actual string or a string
attribute.

"Restore" = Activates and shows the application's window.
"Minimize" = Activates a window and shows it as an icon.
"Maximize" = Activates and shows the application's window.
"Close" = Closes an application.

Example
WWControl("Calculator", "Restore");

See Also

ActivateApp()

String Functions

Use string functions to work with character strings and string values.

DText()

Returns one of two possible strings, depending on the value of the Discrete parameter.
Category
String

Syntax
StringResult = DText(Discrete, OnMsg, OffMsg);

Parameters

Discrete
A Boolean value or Boolean attribute.

OnMsg
The message that is shown when the value of Discrete equals true.

OffMsg
The message shown when Discrete equals false.

Example
StringResult = DText(me.temp > 150, "Too hot", "Just right");

StringASCII()

Returns the ASCII value of the first character in a specified string.
Category

String

Syntax
IntegerResult = StringASCII(Char);

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 111

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

Parameter

Char
Alphanumeric character or string or string attribute.

Remarks

When this function is processed, only the single character is tested or affected. If the string provided to
StringASCII contains more than one character, only the first character of the string is tested.

Examples

StringASCII("A"); ' returns 65;

StringASCII("A Mixer is Running"); ' returns 65;
StringASCII("a mixer is running"); ' returns 97;

See Also

StringChar(), StringFromintg(), StringFromReal(), StringFromTime(), StringInString(), StringLeft(), StringLen(),
StringLower(), StringMid(), StringReplace(), StringRight(), StringSpace(), StringTest(), StringTolntg(),
StringToReal(), StringTrim(), StringUpper(), Text()

StringChar()

Returns the character corresponding to a specified ASCII code.
Category
String

Syntax
StringResult = StringChar(ASCII);

Parameter

ASCII
ASCII code or an integer attribute.

Remarks

Use the StringChar function to add ASCII characters not normally represented on the keyboard to a string
attribute.

This function is also useful for SQL commands. The where expression sometimes requires double quotation
marks around string values, so use StringChar(34).

Example

In this example, a [Carriage Return (13)] and [Line Feed (10)] are added to the end of StringAttribute and passed
to ControlString. Inserting characters out of the normal 32-126 range of displayable ASCII characters can be very
useful for creating control codes for external devices such as printers or modems.

ControlString = StringAttribute+StringChar(13)+StringChar(10);

StringCompare()

Compares a string value with another string.

Category
String

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 112

A V — VA AVEVA™ Scripting

Chapter 2 — QuickScript .NET Functions

Syntax
StringCompare(Textl, Text2);

Parameters

Text1
First string in the comparison.

Text2
Second string in the comparison.

Return Value

The return value is zero if the strings are identical, -1 if Text1’s value is less than Text2, or 1 if Text1’s value is
greater than Text2.

Example

Result = StringCompare ("Textl","Text2"); (or)

Result = StringCompare (MTextl,MText2);

Where Result is an Integer or Real tag and MTextl and MText2 are Memory Message tags.

See Also

StringASCII(), StringChar(), StringFromintg(), StringFromReal(), StringFromTime(), StringFromTimeLocal(),
StringInString(), StringLeft(), StringLen(), StringLower(), StringMid(), StringReplace(), StringRight(), StringSpace(),
StringTest(), StringTolntg(), StringToReal(), StringTrim(), StringUpper(), Text()

StringCompareNoCase()

Compares a string value with another string and ignores the case.
Category

String

Syntax
SStringCompareNoCase(Textl, Text2);

Parameters

Text1
First string in the comparison.

Text2
Second string in the comparison.

Return Value

The return value is zero if the strings are identical (ignoring case), -1 if Text1’s value is less than Text2 (ignoring
case), or 1 if Text1’s value is greater than Text2 (ignoring case).

Example
Result = StringCompareNoCase ("Textl","TEXT1"); (or)
Result = StringCompareNoCase (MTextl,MText2);

Where Result is an Integer or Real tag and MTextl and MText2 are Memory Message tags.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 113

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

See Also

StringASCII(), StringChar(), StringFromintg(), StringFromReal(), StringFromTime(), StringFromTimeLocal(),
StringInString(), StringLeft(), StringLen(), StringLower(), StringMid(), StringReplace(), StringRight(), StringSpace(),
StringTest(), StringTolntg(), StringToReal(), StringTrim(), StringUpper(), Text()

StringFromGMTTimeToLocal()

Converts a time value (in seconds since Jan-01-1970) to a particular string representation. This is the same as
StringFromTime().

Category
String

Syntax
MessageResult=StringFromGMTTimeToLocal(SecsSincel-1-70,StringType);

Parameters

SecsSincel-1-70
Is converted to the StringType specified and the result is stored in MessageResult.

StringType
Determines the display method:

1 = Displays the date in the same format set from the windows control Panel. (Similar to that displayed for
SDateString.)

2 = Displays the time in the same format set from the Windows control Panel. (Similar to that displayed for
STimeString.)

3 = Displays a 24-character string indicating both the date and time: "Wed Jan 02 02:03:55 1993"

4 = Displays the short form for the day of the week: "Wed"

5 = Displays the long form for the day of the week: "Wednesday"

Remarks

Any adjustments necessary due to Daylight Savings Time are automatically applied to the return result.
Therefore, it is not necessary to make any manual adjustments to the input value to convert to DST.

Example

This example assumes that the time zone on the local node is Pacific Standard Time (UTC-0800). The UTC time
passed to the function is 12:00:00 AM on Friday, 1/2/1970. Since PST is 8 hours behind UTC, the function will
return the following results:

StringFromGMTTimeToLocal(86400, 1); ' returns "1/1/1970"

StringFromGMTTimeToLocal(86400, 2); ' returns "04:00:00 PM"
StringFromGMTTimeToLocal(86400, 3); ' returns "Thu Jan 01 16:00:00 1970"
StringFromGMTTimeToLocal(86400, 4); ' returns "Thu"

StringFromGMTTimeToLocal(86400, 5); ' returns "Thursday"

See Also

StringASCII(), StringChar(), StringFromintg(), StringFromReal(), StringFromTime(), StringFromTimeLocal(),
StringInString(), StringLeft(), StringLen(), StringLower(), StringMid(), StringReplace(), StringRight(), StringSpace(),
StringTest(), StringTolntg(), StringToReal(), StringTrim(), StringUpper(), Text()

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 114

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

StringFromiIntg()

Converts an integer value into its string representation in another base and returns the result.
Category

String

Syntax
SringResult = StringFromIntg(Number, numberBase);

Parameters

Number
Number to convert. Any number or an integer attribute.

numberBase
Base to use in conversion. Any number or an integer attribute.

Examples

StringFromIntg(26, 2); ' returns "11010"
StringFromIntg(26, 8); ' returns "32"
StringFromIntg(26, 16); ' returns "1A"

See Also

StringASCII(), StringChar(), StringFromReal(), StringFromTime(), StringlnString(), StringLeft(), StringLen(),
StringLower(), StringMid(), StringReplace(), StringRight(), StringSpace(), StringTest(), StringTolntg(),
StringToReal(), StringTrim(), StringUpper(), Text()

StringFromReal()

Converts a real value into its string representation, either as a floating-point number or in exponential notation,
and returns the result.

Category
String

Syntax
StringResult = StringFromReal(Number, Precision, Type);

Parameters

Number
Converted to the Precision and Type specified. Any number or a float attribute.

Precision
Specifies how many decimal places is shown. Any number or an integer attribute.

Type
A string value that determines the display method. Possible values are:

f = Display in floating-point notation.
e = Display in exponential notation with a lowercase "e."

E = Display in exponential notation with an uppercase "E" followed by a plus sign and at least three exponential
digits.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 115

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

Examples

StringFromReal(263.355, 2,"f"); ' returns "263.36";
StringFromReal(263.355, 2,"e"); ' returns "2.63e2";
StringFromReal(263.355, 2,"E"); ' returns "2.63 E+002";

See Also

StringASCII(), StringChar(), StringFromintg(), StringFromTime(), StringInString(), StringLeft(), StringLen(),
StringLower(), StringMid(), StringReplace(), StringRight(), StringSpace(), StringTest(), StringTolntg(),
StringToReal(), StringTrim(), StringUpper(), Text()

StringFromTime()

Converts a time value (in seconds since January 1, 1970) into a particular string representation and returns the
result.

Category
String

Syntax
StringResult = StringFromTime(SecsSincel-1-70, StringType);

Parameters

SecsSincel-1-70
Converted to the StringType specified.

StringType
Determines the display method. Possible values are:

1 = Shows the date in the same format set from the Windows Control Panel.

2 = Shows the time in the same format set from the Windows Control Panel.

3 = Shows a 24-character string indicating both the date and time: "Wed Jan 02 02:03:55 1993"
4 = Shows the short form for a day of the week: "Wed"

5 = Shows the long form for a day of the week: "Wednesday"

Remarks

The time value is UTC equivalent: number of elapsed seconds since January 1, 1970 GMT. The value returned
reflects the local time.

Examples

StringFromTime (86400, 1); ' returns "1/2/1970"

StringFromTime (86400, 2); ' returns "12:00:00 AM"
StringFromTime (86400, 3); ' returns "Fri Jan 02 00:00:00 1970"
StringFromTime (86400, 4); ' returns "Fri"

StringFromTime (86400, 5); ' returns "Friday"

See Also

StringASCII(), StringChar(), StringFromIntg(), StringFromReal(), StringFromTime(), StringInString(), StringLeft(),
StringLen(), StringLower(), StringMid(), StringReplace(), StringRight(), StringSpace(), StringTest(), StringTolntg(),
StringToReal(), StringTrim(), StringUpper(), Text()

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 116

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

StringFromTimeLocal()

Converts a time value (in seconds since Jan-01-1970) into a particular string representation. The value returned
also represents local time.

Category
String

Syntax
MessageResult=StringFromTimeLocal(SecsSincel-1-70,

StringType);
Parameters

SecsSincel-1-70
Is converted to the StringType specified and the result is stored in MessageResult.

StringType
Determines the display method:

1 = Displays the date in the same format set from the windows control Panel. (Similar to that displayed for
SDateString.)

2 = Displays the time in the same format set from the Windows control Panel. (Similar to that displayed for
STimeString.)

3 = Displays a 24-character string indicating both the date and time: "Wed Jan 02 02:03:55 1993"

4 = Displays the short form for the day of the week: "Wed"

5 = Displays the long form for the day of the week: "Wednesday"

Remarks

Any adjustments necessary due to Daylight Savings Time will automatically be applied to the return result.
Therefore, it is not necessary to make any manual adjustments for DST to the input value.

Example

StringFromTimeLocal (86400, 1); ' returns "1/2/1970"
StringFromTimeLocal (86400, 2); ' returns "12:00:00 AM"
StringFromTimeLocal (86400, 3); ' returns "Fri Jan 02 00:00:00 1970"
StringFromTimeLocal (86400, 4); ' returns "Fri"

StringFromTimeLocal (86400, 5); ' returns "Friday"

See Also

StringASCII(), StringChar(), StringFromIntg(), StringFromReal(), StringFromTime(), StringInString(), StringLeft(),
StringLen(), StringLower(), StringMid(), StringReplace(), StringRight(), StringSpace(), StringTest(), StringTolntg(),
StringToReal(), StringTrim(), StringUpper(), Text()

StringInString()

Returns the position in a string of text where a specified string first occurs.
Category

String

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 117

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

Syntax
IntegerResult = StringInString(Text, SearchFor, StartPos, CaseSens);

Parameters

Text
The string that is searched. Actual string or a string attribute.

SearchFor
The string to be searched for. Actual string or a string attribute.

StartPos
Determines the position in the text where the search begins. Any number or an integer attribute.

CaseSens
Determines whether the search is case-sensitive.
@ = Not case-sensitive
1 = Case-sensitive
Any number or an integer attribute.

Remarks
If multiple occurrences of SearchFor are found, the location of the first is returned.

Examples

StringInString("The mixer is running", "mix", 1, @) ' returns 5;
StringInString("Today is Thursday", "day", 1, @) ' returns 3;
StringInString("Today is Thursday", "day", 10, @) ' returns 15;
StringInString("Today is Veteran's Day", "Day", 1, 1) ' returns 20;
StringInString("Today is Veteran's Day", "Night", 1, 1) ' returns 0;

See Also

StringASCII(), StringChar(), StringFromintg(), StringFromReal(), StringFromTime(), StringLeft(), StringLen(),
StringLower(), StringMid(), StringReplace(), StringRight(), StringSpace(), StringTest(), StringTolntg(),
StringToReal(), StringTrim(), StringUpper(), Text()

StringLeft()

Returns a specified number of characters in a string value, starting with the leftmost string character.
Category

String

Syntax
StringResult = StringlLeft(Text, Chars);

Parameters

Text
Actual string or a string attribute.

Chars
Number of characters to return or an integer attribute.

Remarks

If Chars is set to O, the entire string is returned.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 118

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

Examples

StringLeft("The Control Pump is On", 3) ' returns "The";

StringLeft("Pump 01 is On", 4) ' returns "Pump";

StringLeft("Pump 01 is On", 96) ' returns "Pump 01 is On";

StringLeft("The Control Pump is On", @) ' returns "The Control Pump is On";

See Also

StringASCII(), StringChar(), StringFromIntg(), StringFromReal(), StringFromTime(), StringInString(), StringLen(),
StringLower(), StringMid(), StringReplace(), StringRight(), StringSpace(), StringTest(), StringTolntg(),
StringToReal(), StringTrim(), StringUpper(), Text()

StringLen()

Returns the number of characters in a string.
Category

String

Syntax
IntegerResult = Stringlen(Text);

Parameter

Text
Actual string or a string attribute.

Remarks

All the characters in the string attribute are counted, including blank spaces and those not normally shown on
the screen.

Examples

StringLen("Twelve percent") ' returns 14;
StringLen("12%") ' returns 3;

StringLen("The end." + StringChar(13)) ' returns 9;

The carriage return character is ASCIl 13.
See Also

StringASCII(), StringChar(), StringFromIntg(), StringFromReal(), StringFromTime(), StringInString(), StringLeft(),
StringLower(), StringMid(), StringReplace(), StringRight(), StringSpace(), StringTest(), StringTolntg(),
StringToReal(), StringTrim(), StringUpper(), Text()

StringLower()

Converts all uppercase characters in text string to lowercase and returns the result.
Category

String

Syntax
StringResult = StringLower(Text);

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 119

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

Parameter

Text
String to be converted to lowercase. Actual string or a string attribute.

Remarks
Lowercase characters, symbols, numbers, and other special characters are not affected.

Examples
StringLower ("TURBINE") ' returns "turbine";
StringLower("22.2 Is The Value") ' returns "22.2 is the value";

See Also

StringASCII(), StringChar(), StringFromIntg(), StringFromReal(), StringFromTime(), StringInString(), StringLeft(),
StringLen(), StringMid(), StringReplace(), StringRight(), StringSpace(), StringTest(), StringTolntg(), StringToReal(),
StringTrim(), StringUpper(), Text()

StringMid()

Extracts a specific number of characters from a starting point within a string and returns the extracted character
string as the result.

Category
String

Syntax
StringResult = StringMid(Text, StartChar, Chars);

Parameters

Text
Actual string or a string attribute to extract a range of characters.

StartChar
The position of the first character within the string to extract. Any number or an integer attribute.

Chars
The number of characters within the string to return. Any number or an integer attribute.

Remarks

This function is slightly different than the Stringleft() function and StringRight() function in that it allows you to
specify both the start and end of the string that is to be extracted.

Examples
StringMid("The Furnace is Overheating",5,7); ' returns "Furnace";
StringMid("The Furnace is Overheating",13,3); ' returns "is ";

StringMid("The Furnace is Overheating",16,50); returns "Overheating”

See Also

StringASCII(), StringChar(), StringFromIntg(), StringFromReal(), StringFromTime(), StringInString(), StringLeft(),
StringLen(), StringLower(), StringReplace(), StringRight(), StringSpace(), StringTest(), StringTolntg(), StringToReal(),
StringTrim(), StringUpper(), Text()

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 120

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

StringReplace()

Replaces or changes specific parts of a provided string and returns the result.
Category

String

Syntax
StringResult = StringReplace(Text, SearchFor, ReplaceWith, CaseSens, NumToReplace,
MatchWholeWords);

Parameters

Text
The string in which characters, words, or phrases will be replaced. Actual string or a string attribute.

SearchFor
The string to search for and replace. Actual string or a string attribute.

ReplaceWith
The replacement string. Actual string or a string attribute.

CaseSens
Determines whether the search is case-sensitive. (0=no and 1=yes) Any number or an integer attribute.

NumToReplace
Determines the number of occurrences to replace. Any number or an integer attribute. To indicate all
occurrences, set this value to -1.

MatchWholeWords
Determines whether the function limits its replacement to whole words. (0=no and 1=yes) Any number or an
integer attribute. If MatchWholeWord:s is turned on (set to 1) and the SearchFor is set to "and", the "and" in
"handle" are not replaced. If the MatchWholeWords is turned off (set to 0), it is replaced.

Remarks
Use this function to replace characters, words, or phrases within a string.

The StringReplace() function does not recognize special characters, suchas @ #5 % & * (). It reads them as
delimiters. For example, if the function StringReplace() (abc#,abc#,1234,0,1,1) is processed, there is no
replacement. The # sign is read as a delimiter instead of a character.

Examples

StringReplace("In From Within","In","Out",0,1,0) ' returns "Out From Within" (replaces
only the first one);
StringReplace("In From Within","In","
all occurrences);

StringReplace("In From Within","In","Out",1,-1,0) ' returns "Out From Within" (replaces
all that match case);

StringReplace("In From Within","In","Out",0,-1,1) ' returns "Out From Within" (replaces
all that are whole words);

Out",0,-1,0) ' returns "Out From without" (replaces

See Also

StringASCII(), StringChar(), StringFromintg(), StringFromReal(), StringFromTime(), StringInString(), StringLeft(),
StringLen(), StringLower(), StringMid(), StringRight(), StringSpace(), StringTest(), StringTolntg(), StringToReal(),
StringTrim(), StringUpper(), Text()

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 121

AV=VA

StringRight()

AVEVA™ Scripting
Chapter 2 — QuickScript .NET Functions

Returns the specified number of characters starting at the right-most character of text.

Category
String
Syntax

StringResult = StringRight(Text, Chars);

Parameters

Text

Actual string or a string attribute.

Chars

The number of characters to return or an integer attribute.

Remarks

If Chars is set to O, the entire string is returned.

Examples

StringRight("The
StringRight("The
StringRight("The
StringRight("The

See Also

Pump
Pump
Pump
Pump

is
is
is
is

Oon", 2) ' returns "On";

on", 5) ' returns "is On";

On", 87) ' returns "The Pump is On";
On", @) ' returns "The Pump is On";

StringASCII(), StringChar(), StringFromIntg(), StringFromReal(), StringFromTime(), StringInString(), StringLeft(),

StringLen(), StringLower(), StringMid(), StringReplace(), StringSpace(), StringTest(), StringTolntg(), StringToReal(),

StringTrim(), StringUpper(), Text()

StringSpace()

Generates a string of spaces either within a string attribute or within an expression and returns the result.

Category
String
Syntax

StringResult = StringSpace(NumSpaces);

Parameter

NumSpaces

Number of spaces to return. Any number or an integer attribute.

Examples

All spaces are represented by the "x" character:
StringSpace(4) ' returns "xxxx";

"Pump" + StringSpace(1) + "Station"

returns "PumpxStation";

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 122

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

See Also

StringASCII(), StringChar(), StringFromIntg(), StringFromReal(), StringFromTime(), StringInString(), StringLeft(),
StringLen(), StringLower(), StringMid(), StringReplace(), StringRight(), StringTest(), StringTolntg(), StringToReal(),
StringTrim(), StringUpper(), Text()

StringTest()

Tests the first character of text to determine whether it is of a certain type and returns the result.
Category
String

Syntax
DiscreteResult = StringTest(Text, TestType);

Parameters

Text
String that function acts on. Actual string or a string attribute.

TestType
Determines the type of test. Possible values are:

1 = Alphanumeric character ('A-Z', 'a-z' and '0-9')
2 = Numeric character ('0- 9')

3 = Alphabetic character ('A-Z' and 'a-z')

4 = Uppercase character ('A-Z')

5 = Lowercase character ('a'-'z')

6 = Punctuation character (0x21-0x2F)

7 = ASCII characters (0x00 - Ox7F)

8 = Hexadecimal characters ('A-F' or 'a-f' or '0-9')
9 = Printable character (0x20-0x7E)

10 = Control character (0x00-Ox1F or Ox7F)

11 = White Space characters (0x09-0x0D or 0x20)
Remarks

StringTest() function returns true to DiscreteResult if the first character in Text is of the type specified by
TestType. Otherwise, false is returned. If the StringTest() function contains more than one character, only the first
character of the attribute is tested.

Examples
StringTest("ACB123",1) ' returns 1;
StringTest("ABC123",5) ' returns 0;

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 123

A V — VA AVEVA™ Scripting

Chapter 2 — QuickScript .NET Functions

See Also

StringASCII(), StringChar(), StringFromIntg(), StringFromReal(), StringFromTime(), StringInString(), StringLeft(),
StringLen(), StringLower(), StringMid(), StringReplace(), StringRight(), StringSpace(), StringTolntg(), StringToReal(),
StringTrim(), StringUpper(), Text()

StringTolntg()

Converts the numeric value of a string to an integer value and returns the result.
Category

String

Syntax
IntegerResult = StringToIntg(Text);

Parameter

Text
String that function acts on. Actual string or a string attribute.

Remarks

When this statement is evaluated, the system reads the first character of the string for a numeric value. If the
first character is other than a number, the string's value is equated to zero (0). Blank spaces are ignored. If the
first character is a number, the system continues to read the subsequent characters until a non-numeric value is
detected.

Examples

StringToIntg("ABCD"); ' returns 0;

StringToIntg("22.2 is the Value"); ' returns 22 (since integers are whole numbers);
StringToIntg("The Value is 22"); ' returns 0;

See Also

StringASCII(), StringChar(), StringFromIntg(), StringFromReal(), StringFromTime(), StringInString(), StringLeft(),
StringLen(), StringLower(), StringMid(), StringReplace(), StringRight(), StringSpace(), StringTest(), StringToReal(),
StringTrim(), StringUpper(), Text()

StringToReal()

Converts the numeric value of a string to a real (floating point) value and returns the result.
Category

String

Syntax
RealResult = StringToReal(Text);

Parameter

Text
String that function acts on. Actual string or a string attribute.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 124

_AV — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

Remarks

When this statement is evaluated, the system reads the first character of the string for a numeric value. If the
first character is other than a number (blank spaces are ignored), the string's value is equated to zero (0). If the
first character is found to be a number, the system continues to read the subsequent characters until a non-
numeric value is encountered.

Examples

StringToReal("ABCD"); ' returns 0;
StringToReal("22.261 is the value"); ' returns 22.261;
StringToReal("The Value is 2"); ' returns 0;

See Also

StringASCII(), StringChar(), StringFromIntg(), StringFromReal(), StringFromTime(), StringInString(), StringLeft(),
StringLen(), StringLower(), StringMid(), StringReplace(), StringRight(), StringSpace(), StringTest(), StringTolntg(),
StringTrim(), StringUpper(), Text()

StringTrim()

Removes unwanted spaces from text and returns the result.
Category

String

Syntax
StringResult = StringTrim(Text, TrimType);

Parameter

Text
String that is trimmed of spaces. Actual string or a string attribute.

TrimType
Determines how the string is trimmed. Possible values are:

1 = Remove leading spaces to the left of the first non-space character
2 = Remove trailing spaces to the right of the last non-space character
3 = Remove all spaces except for single spaces between words
Remarks

The text is searched for white-spaces (ASCIlI 0x09-0x0D or 0x20) that are to be removed. TrimType determines
the method used by the function:

Examples

All spaces are represented by the "x" character.
StringTrim("xxxxxThisxisxaxxtestxxxxx", 1) ' returns "Thisxisxaxxtestxxxxx";
StringTrim("xxxxxThisxisxaxxtestxxxxx", 2) ' returns "xxxxxThisxisxaxxtest";
StringTrim("xxxxxThisxisxaxxtestxxxxx", 3) ' returns "Thisxisxaxtest";

The StringReplace() function can remove ALL spaces from a specified a string attribute. Simply replace all the
space characters with a "null."

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 125

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

See Also

StringASCII(), StringChar(), StringFromIntg(), StringFromReal(), StringFromTime(), StringInString(), StringLeft(),
StringLen(), StringLower(), StringMid(), StringReplace(), StringRight(), StringSpace(), StringTest(), StringTolntg(),
StringToReal(), StringUpper(), Text()

StringUpper()

Converts all lowercase text characters to uppercase and returns the result.
Category

String

Syntax
StringResult = StringUpper(Text);

Parameter

Text
String to be converted to uppercase. Actual string or a string attribute.

Remarks
Uppercase characters, symbols, numbers, and other special characters are not affected.

Examples
StringUpper("abcd"); ' returns "ABCD";
StringUpper("22.2 is the value"); ' returns "22.2 IS THE VALUE";

See Also

StringASCII(), StringChar(), StringFromIntg(), StringFromReal(), StringFromTime(), StringInString(), StringLeft(),
StringLen(), StringLower(), StringMid(), StringReplace(), StringRight(), StringSpace(), StringTest(), StringTolntg(),
StringToReal(), StringTrim(), Text()

Text()

Converts a number to text based on a specified format.
Category
String

Syntax
StringResult = Text(Number, Format);

Parameters

Number
Any number or numeric attribute.

Format
Format to use in conversion. Actual string or a string attribute.

Examples

Text(66,"#.00"); ' returns 66.00;
Text(22.269,"#.00"); ' returns 22.27;
Text(9.999,"#.00"); ' returns 10.00;

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 126

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

The following example shows how to use this function within another function:
LogMessage("The current value of FreezerRoomTemp is:" + Text (FreezerRoomTemp, "#.#"));

In the following example, MessageTag is set to "One=1 Two=2".
MessageTag = "One + " + Text(1,"#") + StringChar(32) + "Two +" + Text(2,"#");

See Also

StringFromIntg(), StringTolntg(), StringFromReal(), StringToReal()

WWStringFromTime()

Converts a time value given in local time into UTC time (Coordinated Universal Time), and displays the result as a
string.

Category
String

Syntax
MessageResult = wwStringFromTime(SecsSincel-1-70,StringType);

Parameters

SecsSincel-1-70
Integer Type. Number of Seconds elapsed since Jan 01 00:00:00 1970.

StringType
Determines the display method:

1 = Displays the date in the same format set from the windows control Panel. (Similar to that displayed for
SDateString.)

2 = Displays the time in the same format set from the Windows control Panel. (Similar to that displayed for
STimeString.)

3 = Displays a 24-character string indicating both the date and time: "Wed Jan 02 02:03:55 1993"

4 = Displays the short form for the day of the week: "Wed"

5 = Displays the long form for the day of the week: "Wednesday"

Remarks

Any adjustments necessary due to Daylight Savings Time will automatically be applied to the return result.
Therefore, it is not necessary to make any manual adjustments for DST to the input value.

Example

This example assumes that the time zone on the local node is Pacific Standard Time (UTC-0800). The local time
passed to the function is 04:00:00 PM on Thursday, 1/1/1970. Since PST is 8 hours behind UTC, the function will
return the following results:

wwStringFromTime (57600, 1) will return "1/2/70"

wwStringFromTime (57600, 2) will return "12:00:00 AM"

wwStringFromTime (57600, 3) will return "Fri Jan 02 00:00:00 1970"

wwStringFromTime (57600, 4) will return "Fri"

wwStringFromTime (57600, 5) will return "Friday"

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 127

AV=VA

System Functions

AVEVA™ Scripting
Chapter 2 — QuickScript .NET Functions

Use system functions to interact with the operating system or other core system functions, such as ActiveX

objects.

CreateObject()

Creates an ActiveX (COM) object.
Category

System

Syntax
ObjectResult = CreateObject(ProgID);

Parameter

ProgID

The program ID (as a string) of the object to be created.

Example
CreateObject ("ADODB.Connection");

Now()

Returns the current time.
Category
System

Syntax
TimeValue = Now();

Remarks

The return value can be formatted using .NET functions.

WWDDE Functions

Use WWDDE functions when working with the DDE protocol.

WWExecute()

Using the DDE protocol, executes a command to a specified application and topic and returns the status.

Category
WWDDE
Syntax

Status = WWExecute(Application, Topic, Command);

Parameters

Application

The application to which you want to send an execute command. Actual string or a string attribute.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved.

Page 128

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

Topic
The topic within the application. Actual string or a string attribute.

Command
The command to send. Actual string or a string attribute.

Return Value

Status is an Integer attribute to which 1, -1, or 0 is written. The WWExecute() function returns 1 if the application
is running, the topic exists, and the command was sent successfully. It returns 0 when the application is busy, and
-1 when there is an error.

Remarks

Note: The three WWDDE functions Execute(), Poke() and Request() exist for legacy purposes.

The Command string is sent to a specified application and topic.

Important: The following applies to using WWExecute() in synchronous scripts:
1. Never loop them (call them over and over).

2. Never call several of them in a row and in the same script.

3. Never use them to call a lengthy task in another DDE application.

All three actions, though, are appropriate in asynchronous scripts.

Examples

The following statement executes a macro in Excel:

Macro="Macrol!TestMacro";

Command="[Run(" + StringChar(34) + Macro + StringChar(34)
+ ",0)1";

WWExecute("excel","system",Command);

When WWExecute("excel", "system",Command); is processed, the following is sent to Excel (and TestMacro
runs):
[Run("Macrol!TestMacro")];

The following script executes a macro in Microsoft Access:

WWExecute("MSAccess", "system", "MyMacro");

WWPoke()

Using the DDE protocol, pokes a value to a specified application, topic, and item and returns the status.
Category
WWDDE

Syntax
Status = WwPoke(Application, Topic, Item, TextValue);

Parameters

Application
The application to which you want to send the Poke command. Actual string or a string attribute.

Topic
The topic within the application. Actual string or a string attribute.

Item

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 129

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

The item to poke within the topic. Actual string or a string attribute.

TextValue
The value to poke. If the value you want to send is a number, you can convert it using the Text(),
StringFromIintg(), or StringFromReal() functions. Actual string or a string attribute.

Return Value

Status is an Integer attribute to which 1, -1, or 0 is written. The WWPoke() function returns 1 if the application is
running, the topic and item exist, and the value was sent successfully. It returns 0 if the application is busy, and -1
if there is an error.

Remarks

Note: The three WWDDE functions Execute(), Poke() and Request() exist for legacy purposes.

The value TextValue is sent to the particular application, topic, and item specified.

Important: The following applies to using WWRequest() in synchronous scripts:

1. Never loop them (call them over and over).

2. Never call several of them in a row and in the same script.

3. Never use them to call a lengthy task in another DDE application. All three actions, though, are appropriate in
asynchronous scripts.

Example

The following statement converts a value to text and pokes the result to an Excel spreadsheet cell:
String=Text(Value,"0");
WWPoke("excel","[Bookl.x1ls]sheetl","rlcl",String);

The behavior for WWPoke() from within the application "View" to "View" is undefined and is not supported. The
WWPoke() command is not guaranteed to succeed in this instance, and the command will probably time-out
without the desired results.

See Also

Text(), StringFromIntg(), StringFromReal()

WWRequest()

Using the DDE protocol, makes a one-time request for a value from a particular application, topic, and item and
returns the status.

Category
WWDDE

Syntax
Status = WWRequest(Application, Topic, Item, Attribute);

Parameters

Application
The application from which you want to request data. Actual string or a string attribute.

Topic
The topic within the application. Actual string or a string attribute.

Item

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 130

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

The item within the topic. Actual string or a string attribute.

Attribute
A string attribute, enclosed in quotation marks, that contains the requested value from the application,
topic, and item. Actual string or a string attribute.

Return Value

Status is an integer attribute to which 1, -1, or 0 is written. The WWRequest() function returns 1 if the
application is running, the topic and item exist, and the value was returned successfully. It returns 0 if the
application is busy, and -1 if there is an error.

Remarks

Note: The three WWDDE functions Execute(), Poke() and Request() exist for legacy purposes.

The DDE value in the particular application, topic, and item is returned into Attribute.

The value is returned as a string into a string attribute. If the value is a number, you can then convert it using the
StringTolntg() or StringToReal() functions.

Important: Never do the following when using WWRequest() in synchronous scripts:
1. Loop scripts (call them over and over).

2. Call several of scripts in a row and in the same script.

3. Use scripts to call a lengthy task in another DDE application.

All three actions can be done in asynchronous scripts.

Example

The following statement requests a value from an Excel spreadsheet cell and converts the resulting string into a

value:
WWRequest("excel","[Bookl.xls]sheetl","rlcl",Result);
Value=StringToReal(Result);

See Also

StringTolntg(), StringToReal()

QuickScript .NET Operators

The following QuickScript .NET operators require a single operand:

Operator Short Description
~ Complement

- Negation

NOT Logical NOT

The following QuickScript .NET operators require two operands:

Operator Short Description

+ Addition and concatenation

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 131

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

Operator Short Description

- Subtraction

& Bitwise AND

* Multiplication

ok Power

/ Division

A Exclusive OR
Inclusive OR

< Less than

<= Less than or equal to

<> Not equal to

= Assignment

== Equivalency (is equivalent to); not supported for entire array
compares. Compare the arrays one element at a time using ==.

> Greater than

>= Greater than or equal to
AND Logical AND

MOD Modulo

OR Logical OR

SHL Left shift

SHR Right shift

The following table shows the precedence of QuickScript .NET operators:

Precedence Operator

1 (highest) ()

2 - (negation), NOT, ~
3 % %k

4 * [/, MOD

+, - (subtraction)

6 SHL, SHR

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 132

_AV — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

Precedence Operator
7 <, >, <=, >=
8 ==, <>

9 &

10 A

11

12 =

13 AND

14 (lowest) OR

The arguments of the listed operators can be numbers or attribute values. Putting parentheses around an
argument is optional. Operator names are not case-sensitive.

Parentheses ()

Parentheses specify the correct order of evaluation for the operator(s). They can also make a complex expression
easier to read. Operator(s) in parentheses are evaluated first, preempting the other rules of precedence that
apply in the absence of parentheses. If the precedence is in question or needs to be overridden, use
parentheses.

In the example below, parentheses add B and C together before multiplying by D:
(B+C) *D;
Negation (-)

Negation is an operator that acts on a single component. It converts a positive integer or real number into a
negative number.

Complement (~)

This operator yields the one's complement of a 32-bit integer. It converts each zero-bit to a one-bit and each
one-bit to a zero-bit. The one's complement operator is an operator that acts on a single component, and it
accepts an integer operand.

Power (**)

The Power operator returns the result of a number (the base) raised to the power of a second number (the
power). The base and the power can be any real or integer numbers, subject to the following restrictions:

¢ A zero base and a negative power are invalid.
Example: "0 ** - 2" and "0 ** -2.5"
¢ A negative base and a fractional power are invalid.

Example: "-2 ** 2.5" and "-2 ** -2.5"

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 133

A V — VA AVEVA™ Scripting

Chapter 2 — QuickScript .NET Functions

¢ Invalid operands yield a zero result.

The result of the operation cannot be so large or so small that it cannot be represented as a real number.
Example:

1 ** 1 =1.0

3 %¥* 2 =9.0

10 ** 5 = 100,000.0

Multiplication (*), Division (/), Addition (+),Subtraction (-)

These binary operators perform basic mathematical operations. The plus (+) can also concatenate String
datatypes.

For example, in the data change script below, each time the value of "Number" changes, "Setpoint" changes as
well:

Number=1;

Setpoint.Name = "Setpoint" + Text(Number, "#");

Where: The result is "Setpoint1."

Modulo (MOD)

MOD is a binary operator that divides an integer quantity to its left by an integer quantity to its right. The
remainder of the quotient is the result of the MOD operation. Example:

97 MOD 8 yields 1

63 MOD 5 yields 3

Shift Left (SHL), Shift Right (SHR)

SHL and SHR are binary operators that use only integer operands. The binary content of the 32-bit word
referenced by the quantity to the left of the operator is shifted (right or left) by the number of bit positions
specified in the quantity to the right of the operator.

Bits shifted out of the word are lost. Bit positions vacated by the shift are zero-filled. The shift is an unsigned
shift.

Bitwise AND (&)

A bitwise binary operator compares 32-bit integer words with each other, bit for bit. Typically, this operator
masks a set of bits. The operation in this example "masks out" (sets to zero) the upper 24 bits of the 32-bit word.
For example:

result = name & Oxff;

Exclusive OR () and Inclusive OR (|)

The ORs are bitwise logical operators compare 32-bit integer words to each other, bit for bit. The Exclusive OR
compare the status of bits in corresponding locations. If the corresponding bits are the same, a zero is the result.
If the corresponding bits differ, a one is the result. Example:

@ N 0 yields ©

0 N1 yields 1

1~ 0 yields 1

1~ 1 yields ©

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 134

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

The Inclusive OR examines the corresponding bits for a one condition. If either bit is a one, the result is a one.
Only when both corresponding bits are zeros is the result a zero. For example:

0 | 0 yields @
0 | 1 yields 1
1 | @ yields 1
1| 1 yields 1

Assignment (=)

Assignment is a binary operator which accepts integer, real, or any type of operand. Each statement can contain
only one assignment operator. Only one name can be on the left side of the assignment operator.

Read the equal sign (=) of the assignment operator as "is assigned to" or "is set to."

Don't confuse the equal sign with the equivalency sign (==) used in comparisons.

Comparisons (<, >, <=, >=, ==, <>)

Comparisons in IF-THEN-ELSE statements execute various instructions based on the state of an expression.

AND, OR, and NOT

These operators work only on discrete attributes. If these operators are used on integers or real numbers, they
are converted as follows:

e Real to Discrete: If real is 0.0, discrete is 0, otherwise discrete is 1.
¢ Integer to Discrete: If integer is O, discrete is 0, otherwise discrete is 1.

If the statement is: "Discl = Reall AND Real2;" and Reallis 23.7 and Real2 is 0.0, Disc1 has 0 assigned to
it, since Reall is converted to 1 and Real2 is converted to O.

When assigning the floating-point result of a mathematical operation to an integer, the value is rounded to the
nearest integer instead of truncating it. This means that an operation like IntAttr = 32/60 results in IntAttr
having a value of 1, not 0. If truncation is needed, use the Trunc() function.

QuickScript .NET Variables

Declare the QuickScript .NET variables before they can be used in QuickScript .NET scripts. Variables can be used
on both the left and right side of statements and expressions.

Local variables or attributes can be used together in the same script. Variables declared within the script body
lose their value after the script is executed. Those declared in the script body cannot be accessed by other
scripts.

Variables declared in the Declarations area maintain their values throughout the lifetime of the object that the
script is associated with.

Declare each variable in the script by a separate DIM statement followed by a semicolon. Enter DIM
statements in the Declarations area of the Script tab page. The DIM statement syntax is as follows:

DIM <variable_name> [(<upper_bound>
[, <upper_bound >[, < upper_bound >]])]
[AS <«data_type>];

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 135

_AV — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

where:
DIM Required keyword.
<variable_name> Name that begins with a letter (A-Z or a-z) and whose remaining characters
can be any combination of letters (A-Z or a-z), digits (0-9) and underscores
(). The variable name is limited to 255 Unicode characters.
<upper_bound> Reference to the upper bound (a number between 1 and 2,147,483,647,
inclusive) of an array dimension. Three dimensions are supported in a DIM
statement, each being nested in the syntax structure. After the upper bound
is specified, it is fixed after the declaration. A statement similar to Visual
Basic’s ReDim is not supported.
The lower bound of each array dimension is always 1.
AS Optional keyword for declaring the variable’s datatype.
<data_type> Any one of the following 11 datatypes: Boolean, Discrete, Integer,

ElapsedTime, Float, Real, Double, String, Message, Time or Object.

Data_type can also be a .Net data_type like System.Xml.XmIDocument or a
type defined in an imported script library

If you omit the AS clause from the DIM statement, the variable, by default, is
declared as an Integer datatype. For example:

DIM LocVarl;
is equivalent to:

DIM LocVarl AS Integer;

In contrast to attribute names, variable names must not contain dots. Variable names and the data type
identifiers are not case sensitive. If there is a naming conflict between a declared variable and another named
entity in the script (for example, attribute name, alias or name of an object leveraged by the script), the variable
name takes precedence over the other named entities. If the variable name is the same as an alias name, a
warning message appears when the script is validated to indicate that the alias is ignored.

The syntax for specifying the entire array is "[]" for both local array variables and for attribute references. For
example, to assign an attribute array to a local array, the syntax is:

locarr[] = tag.attr[];

DIM statements can be located anywhere in the script body, but they have to precede the first referencing script
statement or expression. If a local variable is referenced before the DIM statement, script validation done when
you save the object containing the script prompts you to define it.

The validation mentioned above occurs only when you save the object containing the script. This is not the script
syntax validation done when you click the Validate Script button.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 136

_AV — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

Don't cascade DIM statements. For example, the following examples are invalid:
DIM LocVarl AS Integer, LocVar2 AS Real;
DIM LocVar3, LocVar4, LocVar5, AS Message;

To declare multiple variables, enter separate DIM statements for each variable.

When used on the right side of an equation, declared local variables always cause expressions on the left side to
have Good quality. For example :

dim x as integer;

dim y as integer;

X = 5;
y =5;
me.attr = 5;
me.attr = Xx;

me.attr = x+y;
In each case of me.attr, quality is Good.

When you use a variable in an expression to the right of the operator, its Quality is treated as Good for the
purpose of data quality propagation.

You can use null to indicate that there is no object currently assigned to a variable. Using null has the same
meaning as the keyword "null" in C# or "nothing" in Visual Basic. Assigning null to a variable makes the variable
eligible for garbage collection. You may not use a variable whose value is null. If you do, the script terminates and
an error message appears in the logger. You may, however, test a variable for null. For example:

IF myvar == null THEN ...

It is not possible to pass attributes as parameters for system objects. To work around this issue, use a local
variable as an intermediary or explicitly convert the attribute to a string using an appropriate function call when
calling the system object.

Numbers and Strings

Allowed format for integer constants in decimal format is as follows:

IntegerConst = @ or [sign] <non-zero_digit> <digit>*;
where:

sign :: = + | -

non-zero_digit ::= 1-9

digit ::= ©-9

For example, an integer constant is a zero or consists of an optional sign followed by one or more digits. Leading
zeros are not allowed. Integer constants outside the range —2147483648 to 2147483647 cause an overflow error.

Prepending either Ox or OX causes a literal integer constant to be interpreted as hexadecimal notation. The +/-
sign is supported.

The acceptable float for integers in hexadecimal is as follows:
IntegerHexConst = [<sign>] <@><x (or X)> <hexdigit>*

where:
sign:=+or-
hexdigit ::= 0-9, A-F, a-f (only eight hexdigits [32-bits] are allowed)

Allowed format for floats is as follows:
FloatConst ::= [<sign>] <digit>* .<digit>+ [<exponent>;]

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 137

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

or
[<sign>] <digit>+ [.<digit>* [<exponent>]];

where:

sign ::= + or -

digit ::= @8-9 (can be one or more decimal digits)

exponent = e (or E) followed by a sign and then digit(s)

Float constants are applicable as values for variables of type float, real, or double. For example, float constants
don't take the number of bytes into account. Script validation detects an overflow when a float, real, or double
variable has been assigned a float constant that exceeds the maximum value.

If no digits appear before the period (.), at least one has to appear after it. If neither an exponent part nor the
period appears, a period is assumed to follow the last digit in the string.

If an attribute reference exists that has a format similar to a float constant with an exponent (such as "5E3"),
then use the Attribute qualifier, as follows:
Attribute("5E3")

Strings have to be surrounded by double quotation marks. They are referred to as quoted strings. The double-
double quote indicates a single double-quote in the string. For example, the string:
Joe said, "Look at that."

can be represented in QuickScript .NET as:
"Joe said, ""Look at that."""

QuickScript .NET Control Structures

QuickScript .NET provides five primary control structures in the scripting environment:

e |F.. THEN ... ELSEIF ... ELSE ... ENDIF

FOR .. TO ... STEP ... NEXT Loop

FOR EACH ... IN ... NEXT

TRY ... CATCH

WHILE Loop

IF ... THEN ... ELSEIF ... ELSE ... ENDIF

IF-THEN-ELSE-ENDIF conditionally executes various instructions based on the state of an expression. The syntax is
as follows:
IF <Boolean_expression> THEN
[statements];
[{ ELSEIF
[statements] }];
[ELSE
[statements]];
ENDIF;

Where Boolean_expression is an expression that can be evaluated as a Boolean.

Depending on the data type returned by the expression, the expression is evaluated to constitute a
True or False state according to the following table:

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 138

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

Data Type Mapping
Boolean, Discrete Directly used (no mapping needed).
Integer Value = 0 evaluated as False.

Value != 0 evaluated as True.

Float, Real Value = 0 evaluated as False.
Value != 0 evaluated as True.

Double Value = 0 evaluated as False.
Value != 0 evaluated as True.

String, Message Cannot be mapped. Using an expression that results in a string type as the
Boolean_expression results in a script validation error.

Time Cannot be mapped. Using an expression that results in a time type as the
Boolean_expression results in a script validation error.

ElapsedTime Cannot be mapped. Using an expression that results in an elapsed time
type as the Boolean_expression results in a script validation error.

Object Using an expression that results in an object type. Validates, but at run
time, the object is converted to a Boolean. If the type cannot be converted
to a Boolean, a run-time exception is raised.

The first block of statements is executed if Boolean_expression evaluates to True. Optionally, a second block of
statements can be defined after the keyword ELSE. This block is executed if the Boolean_expression evaluates to
False.

To help decide between multiple alternatives, an optional ELSEIF clause can be used as often as
needed. The ELSEIF clause mimics switch statements offered by other programming languages. For
example:

IF value == @ Then

Message = "Value is zero";

ELSEIF value > @ Then
Message = "Value is positive"; ELSEIF value < @ Then
Message = "Value is negative";

ELSE
{Default. Should never occur in this example};
ENDIF;

The following approach nests a second IF compound statement within a previous one and requires an
additional ENDIF:

IF (X1 == 1) THEN

X1l = 5;
{ ELSEIF <X1 == 2> THEN
X1 = 10;
ELSEIF X1 == 3 THEN
X1 = 20 ;
ELSEIF X1 == 4 THEN
X1 = 30 };

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 139

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

IF X1 == 99 THEN
X1l = 0;
ENDIF;
ENDIF;

See Sample Scripts for more ideas about using this type of control structure.

... THEN ... ELSEIF ... ELSE ... ENDIF and Attribute Quality

When an attribute value is copied to another attribute of the same type, the attribute’s quality is also copied.
This can be especially relevant when working with /O attributes. For example, the following two statements
copy both value and quality:

me.Attr2 = me.Attrl;

me.Attr2.value = me.Attrl.value;

If only the value needs to be copied and the attribute has the quality BAD, you can use a temporary variable to
hold the value. For example:

Dim temp as Integer;

temp = me.Attrl;

me.Attr2 = temp;

If there is a comparison such as Attrl <> Attr2 and one of the attributes has the quality BAD, then the statements
within the IF control block are not executed. For example, assuming Attrl has the quality BAD:
if me.Attrl<> me.Attr2 then
me.Attr2 = me.Attrl;
endif;

In this script, the statement me.Attr2 = me.Attr1 is not executed because Attrl has the quality BAD and
comparing a BAD quality value with a good quality value is not defined/not possible.

The recommended approach is to first verify the quality of Attrl, as shown in the following example:
if(IsBad(me.Attrl)) then
LogMessage("Attrl quality is bad, its value is not copied to Attr2");
else

if me.Attrl<> me.Attr2 then

me.AttrA2 = me.Attrl;

endif;

endif;

An alternative method of verifying quality is to use the "==" operator:
if Me.Attrl == TRUE then

Or, you can add the "value" property to the simplified IF THEN statement:
if Me.Attrl.value then

Your scripts will execute correctly if you verify the data quality using any of the above methods.

FOR ... TO ... STEP ... NEXT Loop

FOR-NEXT performs a function (or set of functions) within a script several times during a single execution of a
script. The general format of the FOR-NEXT loop is as follows:
FOR <analog var> = <start_expression> TO <end_expression> [STEP <change_expression>];
[statements];
[EXIT FOR;];
[statements];
NEXT;

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 140

_AV — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

Where:
¢ analog_var is a variable of type Integer, Float, Real, or Double.
e start_expression is a valid expression to initialize analog_var to a value for execution of the loop.

¢ end_expression is a valid expression. If analog_var is greater than end_expression, execution of the script
jumps to the statement immediately following the NEXT statement.

This holds true if loop is incrementing up, otherwise, if loop is decrementing, loop termination occurs if
analog_var is less than end_expression.

¢ change_expression is an expression that defines the increment or decrement value of analog_var after
execution of the NEXT statement. The change_expression can be either positive or negative.

¢ |f change_expression is positive, start_expression has to be less than or equal to end_expression or the
statements in the loop don't execute.

¢ |f change_expression is negative, start_expression has to be greater than or equal to end_expression for
the body of the loop to be executed.

If STEP is not set, then change_expression defaults to 1 for increasing increments, and defaults to -1 for
decreasing increments.

Exit the loop from within the body of the loop with the EXIT FOR statement.
The FOR loop is executed as follows:
1. analog_var is set equal to start_expression.

2. If change_expression is positive, the system tests to see if analog_var is greater than end_expression. If so,
the loop exits. If change_expression is negative, the system tests to see if analog_var is less than
end_expression. If so, program execution exits the loop.

3. The statements in the body of the loop are executed. The loop can potentially be exited via the EXIT FOR
statement.

4. analog_var is incremented by 1,-1, or by change_expression if it is specified.
5. Steps 2 through 4 are repeated.

FOR-NEXT loops can be nested. The number of levels of nesting possible depends on memory and resource
availability.

FOR EACH ... IN ... NEXT

FOR EACH loops can be used only with collections exposed by OLE Automation servers. A FOR-EACH loop
performs a function (or set of functions) within a script several times during a single execution of a script. The
general format of the FOR-EACH loop is as follows:
FOR EACH <object_variable> IN <collection_object >

[statements];

[EXIT FOR;];

[statements];
NEXT;

Where:
e object_variable is a dimmed variable.

¢ collection_object is a variable holding a collection object.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 141

A V — VA AVEVA™ Scripting

Chapter 2 — QuickScript .NET Functions

As in the case of the FOR ... TO loop, it is possible to exit the execution of the loop through the statement EXIT
FOR from within the loop.

TRY ... CATCH

TRY ... CATCH provides a way to handle some or all possible errors that may occur in a given block of code, while
still running rather than terminating the program. The TRY part of the code is known as the try block. Deal with
any exceptions in the CATCH part of the code, known as the catch block.

The general format for TRY ... CATCH is as follows:
TRY

[try statements] ’guarded section
CATCH

[catch statements]
ENDTRY

Where:

tryStatements

Statement(s) where an error can occur. Can be a compound statement. The tryStatement is a guarded section.
catchStatements

Statement(s) to handle errors occurring in the associated Try block. Can be a compound statement.

Statements inside the Catch block may reference the reserved ERROR variable, which is a .NET System.Exception
thrown from the Try block. The statements in the Catch block run only if an exception is thrown from the Try
block.

TRY ... CATCH is executed as follows:
1. Run-time error handling starts with TRY. Put code that might result in an error in the try block.
2. If no run-time error occurs, the script will run as usual. Catch block statements will be ignored.
3. If arun-time error occurs, the rest of the try block does not execute.
4

. When a run-time error occurs, the program immediately jumps to the CATCH statement and executes the
catch block.

The simplest kind of exception handling is to stop the program, write out the exception message, and
continue the program.

The error variable is not a string, but a .NET object of System.Exception. This means you can determine the
type of exception, even with a simple CATCH statement. Call the GetType() method to determine the
exception type, and then perform the operation you want, similar to executing multiple catch blocks.

Example:
dim command = new System.Data.SqlClient.SqlCommand;
dim reader as System.Data.SqlClient.SqglDataReader;
command.Connection = new System.Data.SqlClient.SqlConnection;
try
command.Connection.ConnectionString = "Integrated Security=SSPI";
command.CommandText="select * from sys.databases";
command.Connection.Open();
reader = command.ExecuteReader();
while reader.Read()

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 142

A V — VA AVEVA™ Scripting
— Chapter 2 — QuickScript .NET Functions

me.name = reader.GetString(9);
LogMessage(me.name);
endWhile;
catch
LogMessage(error);
endtry;
if reader <> null and not reader.IsClosed then
reader.Close();
endif;
if command.Connection.State == System.Data.ConnectionState.Open then
command.Connection.Close();
endif;

WHILE Loop

WHILE loop performs a function or set of functions within a script several times during a single execution of a
script while a condition is true. The general format of the WHILE loop is as follows:
WHILE <Boolean_expression>
[statements]
[EXIT WHILE;]
[statements]
ENDWHILE;

Where: Boolean_expression is an expression that can be evaluated as a Boolean as defined in the description of
IF...THEN statements.

It is possible to exit the loop from the body of the loop through the EXIT WHILE statement.
The WHILE loop is executed as follows:

1. The script evaluates whether the Boolean_expression is true or not. If not, program execution exits the loop
and continues after the ENDWHILE statement.

2. The statements in the body of the loop are executed. The loop can be exited through the EXIT WHILE
statement.

3. Steps 1 through 2 are repeated.

WHILE loops can be nested. The number of levels of nesting possible depends on memory and resource
availability.

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 143

AV=VA

Chapter 3

Sample QuickScript .NET Scripts

This section includes sample scripts to help you to understand the QuickScript .NET scripting language.

Important Notes: The sample scripts provided with a number of the Application Server scripting functions
should work as written in most Windows operating system and installed software environments, but might not
work with all possible hardware, operating system, and software combinations. We recommend that you modify
the example scripts as necessary to fit your specific environment.

Some sample scripts include references to public websites as examples. You may need to replace those URLs
with a current and verified URLs.

Accessing an Excel Spreadsheet Using an Imported Type Library

The purpose of this script is to write data to an open Excel spreadsheet.
Before using this script, you must first:

1. Import the Microsoft Office Excel dil (Microsoft.Office.Interop.Excel.dll) to create the required namespace.
From the Galaxy menu, select Import, then Script Function Library.

Note: The Microsoft Office Excel dll file name and location may vary, depending on which version of Excel is
installed.

2. Open the Excel spreadsheet you want to access. In the following sample script, the Excel file name and path
are: C:\documents\sample.xlsx

dim app as object;

dim wb as object;

dim ws as object;

app = CreateObject("Excel.Application");
app.Visible=true;

wb = app.Workbooks.Open("C:\documents\sample.xlsx");
ws = wb.ActiveSheet;
ws.Range("A1").Value = 100;
ws.Range("A2").Value = 200;
ws.Range("A3").Value = "=A1*A2";
LogMessage(ws.Range("A3").Value);
wb.Visible=true;

wb.Close(false);

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 144

A V — VA AVEVA™ Scripting
— Chapter 3 — Sample QuickScript .NET Scripts

Accessing an Excel Spreadsheet Using CreateObject

dim app as object;

dim wb as object;

dim ws as object;

app = CreateObject("Excel.Application");
wb = app.Workbooks.Add();

Wws = wb.ActiveSheet;

ws.Range. ("Al1").value = 20;
ws.Range. ("A2").value = 30;
ws.Range. ("A3").value = "=A1*A2";
LogMessage(ws.Range("A3").Value);
wb.Close(false);

Calling a Web Service to Get the Temperature for a Specified Zip
Code

Note: This sample script includes a reference to a public website as an example. You may need to replace that
URL with a current and verified URL.

Requires input string uda me.zipcode and output float uda me.temperature.
First, generate a wrapper for the web service (.Net SDK must be installed).
' To generate wrapper, run the following commands from the DOS prompt:
' set path=%path%;C:\Program Files\Microsoft Visual Studio .NET\FrameworkSDK\Bin
' wsdl http://www.vbws.com/services/weatherretriever.asmx

csc /target:library WeatherRetriever.cs
Next import the generated WeatherRetriever.dll library into your galaxy.
Now write your script:

dim wr as WeatherRetriever;
wr = new WeatherRetriever;

me.temperature = wr.GetTemperature(me.zipcode);

Calling a Web Service to Send an E-mail Message

Note: This sample script includes a reference to a public website as an example. You may need to replace that
URL with a current and verified URL.

First, generate a wrapper for the web service (.Net SDK must be installed).

To generate wrapper, run the following commands from the DOS prompt:

' set path=%path%;C:\Program Files\Microsoft Visual Studio .NET\FrameworkSDK\Bin
' wsdl /namespace:SendMail http://www.xml-webservices.net/services/messaging/smtp_mail/
mailsender.asmx

' c¢sc /target:library Message.cs

Next import the generated Message.dll library into your galaxy.

Now write your script:

dim m as SendMail.Message;

m = new SendMail.Message;

m.SendSimpleMail

(

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 145

A V — VA AVEVA™ Scripting
— Chapter 3 — Sample QuickScript .NET Scripts

{to: } "<type valid email address here>",

{from: } "<type valid email address here>",

{subject: } "Reminder to self",

{body: } "Pick up eggs and milk on your way home."
)

Creating a Look-up Table and Doing a Look-up on It

dim zipcodes as System.Collections.Hashtable;
zipcodes = new System.Collections.Hashtable;
zipcodes["Irvine"] = 92618;

zipcodes["Mission Viejo"] = 92692;
LogMessage(zipcodes["Irvine"]);

Creating an XML Document and Saving it to Disk

dim doc as System.Xml.XmlDocument;
dim catalog as System.Xml.XmlElement;
dim book as System.Xml.XmlElement;
dim title as System.Xml.XmlElement;

dim author as System.Xml.XmlElement;

dim lastName as System.Xml.XmlElement;

dim firstName as System.Xml.XmlElement;

' create new XML document rooted in catalog
doc = new System.Xml.XmlDocument;

catalog = doc.CreateElement("catalog");
doc.AppendChild(catalog);

' add a book to the catalog

book = doc.CreateElement("book");

title = doc.CreateElement("title");

author = doc.CreateElement("author");
lastName = doc.CreateElement("lastName");
firstName = doc.CreateElement("firstName");
author.AppendChild(lastName);
author.AppendChild(firstName);
book.AppendChild(title);
book.AppendChild(author);
catalog.AppendChild(book);
book.SetAttribute("isbn", "©385503822");

title.InnerText = "The Summons";
lastName.InnerText = "Grisham";
firstName.InnerText = "John";

' add another book

book = doc.CreateElement("book");

title = doc.CreateElement("title");
author = doc.CreateElement("author");
lastName = doc.CreateElement("lastName");
firstName = doc.CreateElement("firstName");
author.AppendChild(lastName);
author.AppendChild(firstName);
book.AppendChild(title);
book.AppendChild(author);
catalog.AppendChild(book);

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 146

A V — VA AVEVA™ Scripting

Chapter 3 — Sample QuickScript .NET Scripts

book.SetAttribute("isbn", "044023722X");

title.InnerText = "A Painted House";
lastName.InnerText = "Grisham";
firstName.InnerText = "John";

save the XML document to disk
doc.Save("c:\catalog.xml");

Executing a SQL Parameterized INSERT Command

dim connection as System.Data.SqlClient.SqlConnection;

dim command as System.Data.SqlClient.SqlCommand;

dim regionId as System.Data.SqlClient.SqlParameter;

dim regionDesc as System.Data.SqlClient.SqlParameter;

dim commandText as string;

connection = new
System.Data.SqlClient.SqlConnection("server=(local);uid=sa;database=northwind");
connection.Open();

commandText = "INSERT INTO Region (RegionID, RegionDescription) VALUES (@id, @desc)";
command = new System.Data.SqlClient.SqlCommand(commandText, connection);
regionId = command.Parameters.Add("@id", System.Data.SqlDbType.Int, 4);
regionDesc = command.Parameters.Add("@desc", System.Data.SqlDbType.NChar, 50);
command.Prepare();

regionId.Value = 5;

regionDesc.Value = "Europe";

command. ExecuteNonQuery();

regionId.Value = 6;

regionDesc.Value = "South America";

command. ExecuteNonQuery();

connection.Close();

Filling a String Array and Using It
dim numbers[3] as string;
dim s as string;

numbers[1] = "one";
numbers[2] = "two";
numbers[3] = "three";

LogMessage(numbers[3]);
for each s in numbers[]
LogMessage(s);

next;

Filling a Two-Dimensional Integer Array and Using It
dim x[2,3] as integer;
dim i as integer;

x[1, 1] = 1;
x[1, 2] = 2;
x[1, 3] = 3;
x[2, 1] = 4;
x[2, 2] = 5;
x[2, 3] = 6;

LogMessage(x[2, 3]);

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 147

A V — VA AVEVA™ Scripting

Chapter 3 — Sample QuickScript .NET Scripts

for each i in x[]
LogMessage(i);
next;

Formatting a Number Using a .NET Format 'Picture'
dim i as integer;
i = 1234,
LogMessage("Total cost: " + i.ToString("$#, i, ###.00"));

Formatting a Time Using a .NET Format 'Picture’

dim t as time;
t = Now();
LogMessage("The current time is: " + t.ToString("hh:mm:ss") + ".");

Getting the Directories Under the C Drive

dim dir as System.IO.DirectoryInfo;

for each dir in System.IO.DirectoryInfo(“c:\").GetDirectories()
LogMessage(dir.FullName);

next;

Loading an XML Document from Disk and Doing Look-ups on It

dim doc as System.Xml.XmlDocument;

dim node as System.Xml.XmlNode;

doc = new System.Xml.XmlDocument;

doc.Load("c:\catalog.xml");

' find the title of the book whose isbn is ©44023722X

node = doc.SelectSingleNode("/catalog/book[@isbn="'044023722X"']/title");

LogMessage(node.InnerText);

' find all titles written by Grisham

for each node in doc.SelectNodes("/catalog/book[author/lastName="'Grisham']/title")
LogMessage(node.InnerText);

next;

Querying a SQL Server Database

dim connection as System.Data.SqlClient.SqglConnection;
dim command as System.Data.SqlClient.SqlCommand;
dim reader as System.Data.SqlClient.SqglDataReader;
connection = new
System.Data.SqlClient.SqlConnection("server=(local);uid=sa;database=northwind");
connection.Open();
command = new System.Data.SqlClient.SqlCommand("select * from customers", connection);
reader = command.ExecuteReader();
while reader.Read()
LogMessage(reader("CompanyName"));
endwhile;
reader.Close();
connection.Close();

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 148

A V — VA AVEVA™ Scripting
— Chapter 3 — Sample QuickScript .NET Scripts

Reading a Performance Counter

Requires output float UDA me.PercentProcessorTime.

' Declarations

dim counter as System.Diagnostics.PerformanceCounter;
' Startup

counter = new System.Diagnostics.PerformanceCounter;
counter.CategoryName = "Processor";
counter.CounterName = "% Processor Time";
counter.InstanceName = "0";

' Execute

me.PercentProcessorTime = counter.NextValue();

Reading a Text File from Disk

dim sr as System.IO.StreamReader;

sr = System.IO.File.OpenText("c:\MyFile.txt");

while sr.Peek() > -1
LogMessage(sr.ReadLine());

endwhile;

sr.Close();

Sharing a SQL Connection or Any Other .NET Object

In UserDefined_001 do this:

dim connection as System.Data.SqlClient.SqlConnection;

> Startup

connection = new
System.Data.SqlClient.SqlConnection("server=(local);uid=sa;database=northwind");
connection.Open();

System.AppDomain.CurrentDomain.SetData

("NorthwindConnection", connection);

> Shutdown
System.AppDomain.CurrentDomain.SetData("NorthwindConnection", Null);
connection.Close();

Then in UserDefined_002, UserDefined_003, and so on, do this:
dim connection as System.Data.SqlClient.SqlConnection;
connection = System.AppDomain.CurrentDomain.GetData
("NorthwindConnection");

if connection <> null then
System.Threading.Monitor.Enter(connection);

' use the connection
System.Threading.Monitor.Exit(connection);

endif;

Using DDE to Access an Excel Spreadsheet

WWPoke("excel", "sheetl", "rlcl", "Hello");
WWRequest("excel", "sheetl", "rlcl", me.Greeting);

' Note: use to embed double quotation marks in strings
WWExecute("excel", "sheetl", "[SELECT(""R1C1"")][FONT.PROPERTIES(,""Bold"")]");

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved.

Page 149

A V — VA AVEVA™ Scripting

Chapter 3 — Sample QuickScript .NET Scripts

Using Microsoft Exchange to Send an E-mail Message

The following compatibility notes apply to use of this script:
¢ The script will not work on Microsoft Office 2010 or later due to changes in MAPI handling.
¢ The script is supported only for 32-bit versions of Microsoft Office.

¢ |f you are using Microsoft Office 2007, you must download and install Microsoft Collaboration Data Objects
(CDO) 1.2.1. Additional information on CDO 1.2.1 is available at: http://www.microsoft.com/en-us/
download/details.aspx?id=3671
dim session as object;
dim msg as object;
dim sProfileInfo as string;
sProfileInfo = "<type valid Microsoft Exchange Server Name here>" + StringChar(10) +
"<type valid Exchange Server user name here>";
session = CreateObject("MAPI.Session");
session.Logon(, , False,False , , True, sProfileInfo);
msg = session.Outbox.Messages.Add();
msg.Recipients.Add("<type valid email address here>");
msg.Recipients.Resolve();
msg.Subject = "Reminder to self";
msg.Text = "Pick up eggs and milk on your way home.";
msg.Send();
session.Logoff();

Using Screen-Scraping to Get the Temperature for a City

Note: This sample script includes a reference to a public website as an example. You may need to replace that
URL with a current and verified URL.

Screen-scraping involves downloading a web page,

then using a regular expression to retrieve the desired data.

Requires input string UDA me.CityState, e.g. "Los Angeles,CA"

and output float UDA me.temperature.

dim request as System.Net.WebRequest;

dim reader as System.IO.StreamReader;

dim regex as System.Text.RegularExpressions.Regex;

dim match as System.Text.RegularExpressions.Match;

request = System.Net.WebRequest.Create

(

"http://www.srh.noaa.gov/data/forecasts/zipcity.php?inputstring=" +
System.Web.HttpUtility.UrlEncode(me.CityState)

)s

reader = new System.IO.StreamReader(request.GetResponse().GetResponseStream());
regex = new System.Text.RegularExpressions.Regex("

(.*)°F
");
match = regex.Match(reader.ReadToEnd());

me.temperature = match.Groups(1);

Using SMTP to Send an E-mail Message
System.Web.Mail.SmtpMail.Send
(

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 150

A V — VA AVEVA™ Scripting

Chapter 3 — Sample QuickScript .NET Scripts

{from: } "<type valid email address here>",

{to: } "<type valid email address here>",

{subject: } "Reminder to self",

{body: } "Pick up eggs and milk on your way home."
)

Writing a Text File to Disk

dim sw as System.IO.StreamWriter;

sw = System.IO.File.CreateText("C:\MyFile.txt");
sw.WriteLine("one");

sw.WriteLine("two");

sw.WriteLine("three");

sw.Close();

Dynamically Binding an Indirect Variable to a Reference

You can dynamically bind a variable of type Indirect to an arbitrary reference string and then use it for get/set
purposes. For example:

Assume reference objl.Attrl has value of 7
dim x as indirect;

dim s as string;

s = "objl.Attrl";

x.BindTo(s); ' where s is any expression that returns a string.
' The string should be an ArchestrA reference.
obj2.Attr2 = x; ' sets obj2.Attr2 to the reference x is bound to

" (objl.Attrl in this example, which has value of 7)
X = 1234; ' sets objl.Attrl (in this example) to 1234
IF WriteStatus(x) == MxStatusOk THEN

' . do something
endif;

Note: You can use .BindTo with an attribute on another engine, but this requires additional scripting of the bind
to ensure good quality. For more information, see Binding to Off-engine Attributes.

An unbound indirect returns no data.

If the Galaxy has Advanced Communication Management enabled, we do not recommend that you use
references that are part of an ActiveOnDemand DIObject scan group in a script with an Indirect. The reference
activation process is not in sync with the script execution, so using a function such as the IsUseable() function
always returns false.

For example, the following scripting is NOT recommended.

In the declarations section:

Dim pPump as Indirect;

In Script Body section

pPump.BindTo("Pump_001.State"); 'Pump 001 is part of a DIObject scan group that has
ActiveOnDemand enabled

IF IsUsable(pPump)

THEN Do this...' this will not execute

ELSE

Do that..

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 151

A V — VA AVEVA™ Scripting

Chapter 3 — Sample QuickScript .NET Scripts

ENDIF;

pPump.BindTo("Pump_002.State"); 'Pump_002 is part of a DIObject scan group that has
ActiveOnDemand enabled

IF IsUsable(pPump)

THEN Do this...' this will not execute

ELSE

Do that..

ENDIF;

In the script, only Pump_002 is executing all of the time.

Important: If you have an existing application that uses the same Indirect variable with scripting more than one
time for the items extended to device integration (DI) items or for DI items directly, and you enable Advanced
Communication Management in the IDE, these scripts behave differently or do not execute as expected.

Binding to Off-engine Attributes

Reference binding is inherently an asynchronous process. This means that a reference to an attribute hosted on
the same engine is immediately available, but off-engine references can require additional scan cycles to bind. In

scripting binding to off-engine attributes, we recommend you check indirect variables for quality before using
them.

You can use the following guidelines when binding to off-engine attributes:

¢ Declare the indirect variables in the declarations section of the script. This retains the value across scan
cycles.

¢ Implement a mechanism to define different states of the script to distinguish between the normal execution
cycle and waiting for bound references to resolve.

¢ In the execution or assignment state, use BindTo() to bind the indirect variables. After BindTo, change the
state to "waiting for references" to check these in the next scan.

¢ In the "waiting for reference" state, use IsGood() to check the quality of the indirect variables. When all
references show good quality, change to the normal execution state. The variables then are usable.

¢ You can implement a TimeOut state if required. For example, the remote engine might be Off Scan.

The following script examples illustrate these guidelines.
dim bindedRefl as indirect;
dim bindedRef2 as indirect;
dim scriptState as integer;
' Script States
' @ = normal execution
' 1 = wait for remote references
if (scriptState==0) then;
' normal script logic
perform normal tasks

for this example, change the binding to remote engine

if (System.DateTime.Now.Second mod 10 == 0) then;
LogMessage("Change binding (1)");
bindedRef1l.BindTo("ApplicationObject_001.SimValue@l");
bindedRef2.BindTo("ApplicationObject_001.SimValued2");
scriptState = 1;

endif;

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 152

A V — VA AVEVA™ Scripting

Chapter 3 — Sample QuickScript .NET Scripts

if (System DateTime.Now.Second mod 10 == 5) then;
LogMessage("Change binding (2)");
bindedRefl.BindTo("ApplicationObject_001.SimValue2");
bindedRef2.BindTo("ApplicationObject_001.SimValuel");
scriptState = 1;
endif;
endif;
if (scriptState==1) then;
' wait for remote references
in this example we want two valid references
if (IsGood(bindedRefl) and IsGood(bindedRef2)) then;
LogMessage("Binded references are good.");
scriptState = 0;
endif;
endif;

As an alternative, you can use a WHILE-triggered script to allow evaluation at every scan cycle. Generally, WHILE
loops are not recommended, but can be used to ensure execution
In Declarations:

dim x as indirect;
dim y as boolean;

In Execute (while true: me.z):

if not y then
'This could also be done in the startup script
X.BindTo("Objectl.attributel");
y = true;

endif;

if IsGood(x) then

LogMessage(Xx);
me.z = false;
endif;

© 2022 AVEVA Group plc and its subsidiaries. All rights reserved. Page 153

	Contact Information
	Contents
	Common Scripting Environment
	Script Editing Styles and Syntax
	Required Syntax for Expressions and Scripts
	Simple Scripts
	Script Execution Types
	Startup Scripts
	OnScan Scripts
	Execute Scripts
	OffScan Scripts
	Shutdown Scripts
	Deployment Scripts

	Working with QuickScript Editor Features
	Color Indicators for Script Elements
	Autocomplete
	Accepting Autocomplete Suggestions
	Multi-level Undo and Redo
	Dynamic Referencing Considerations
	Run-Time Client Script Behavior
	Opening a Client Application Window
	Closing a Client Application Window
	Minimizing a Client Application Window
	Maximizing or Restoring a Client Application Window
	Visual Indication of Script Errors
	Line Numbers
	Log Functions

	QuickScript .NET Functions
	Script Functions
	Graphic Client Functions
	GetCPQuality()
	GetCPTimeStamp()
	GetReferences()
	HideContent()
	HideGraphic()
	HideSelf()
	Logoff()
	ShowContent()
	ShowGraphic()
	ShowLoginDialog()

	InTouch Functions
	AddPermission() Function
	AttemptInvisibleLogon() Function
	ChangePassword() Function
	EnableDisableKeys() Function
	FileCopy() Function
	FileDelete() Function
	FileMove() Function
	FileReadFields() Function
	FileReadMessage() Function
	FileWriteFields() Function
	FileWriteMessage() Function
	GetAccountStatus() Function
	GetNodeName() Function
	InfoAppTitle() Function
	InfoDisk() Function
	InfoFile() Function
	InfoInTouchAppDir() Function
	InTouchVersion() Function
	InvisibleVerifyCredentials() Function
	IsAssignedRole() Function
	LaunchTagViewer() Function
	LogonCurrentUser() Function
	PlaySound() Function
	PostLogonDialog() Function
	PrintScreen() Function
	QueryGroupMembership() Function
	ShowHome() Function
	Starting a Windows Application
	SwitchDisplayLanguage() Function
	TseGetClientId() Function
	TseGetClientNodeName() Function
	TseQueryRunningOnClient() Function
	TseQueryRunningOnConsole() Function

	Math Functions
	Abs()
	ArcCos()
	ArcSin()
	ArcTan()
	Cos()
	Exp()
	Int()
	Log()
	Log10()
	LogN()
	Pi()
	Round()
	Sgn()
	Sin()
	Sqrt()
	Tan()
	Trunc()

	Miscellaneous Functions
	ActivateApp()
	Filtering Events

	DateTimeGMT()
	IsBad()
	IsGood()
	IsInitializing()
	IsUncertain()
	IsUsable()
	LogCustom()
	LogDataChangeEvent()
	LogError()
	LogMessage()
	LogTrace()
	LogWarning()
	SendKeys()
	SetAttributeVT()
	SetAttributeVT2()
	SetBad()
	SetGood()
	SetInitializing()
	SetUncertain()
	SignedAckAll()
	SignedAlarmAck()
	SignedWrite()
	WriteStatus()
	WWControl()

	String Functions
	DText()
	StringASCII()
	StringChar()
	StringCompare()
	StringCompareNoCase()
	StringFromGMTTimeToLocal()
	StringFromIntg()
	StringFromReal()
	StringFromTime()
	StringFromTimeLocal()
	StringInString()
	StringLeft()
	StringLen()
	StringLower()
	StringMid()
	StringReplace()
	StringRight()
	StringSpace()
	StringTest()
	StringToIntg()
	StringToReal()
	StringTrim()
	StringUpper()
	Text()
	WWStringFromTime()

	System Functions
	CreateObject()
	Now()

	WWDDE Functions
	WWExecute()
	WWPoke()
	WWRequest()

	QuickScript .NET Operators
	Parentheses ()
	Negation (-)
	Complement (~)
	Power (**)
	Multiplication (*), Division (/), Addition (+),Subtraction (-)
	Modulo (MOD)
	Shift Left (SHL), Shift Right (SHR)
	Bitwise AND (&)
	Exclusive OR (^) and Inclusive OR (|)
	Assignment (=)
	Comparisons (<, >, <=, >=, ==, <>)
	AND, OR, and NOT

	QuickScript .NET Variables
	Numbers and Strings

	QuickScript .NET Control Structures
	IF … THEN … ELSEIF … ELSE … ENDIF
	IF … THEN … ELSEIF … ELSE … ENDIF and Attribute Quality
	FOR … TO … STEP … NEXT Loop
	FOR EACH … IN … NEXT
	TRY ... CATCH
	WHILE Loop

	Sample QuickScript .NET Scripts
	Accessing an Excel Spreadsheet Using an Imported Type Library
	Accessing an Excel Spreadsheet Using CreateObject
	Calling a Web Service to Get the Temperature for a Specified Zip Code
	Calling a Web Service to Send an E-mail Message
	Creating a Look-up Table and Doing a Look-up on It
	Creating an XML Document and Saving it to Disk
	Executing a SQL Parameterized INSERT Command
	Filling a String Array and Using It
	Filling a Two-Dimensional Integer Array and Using It
	Formatting a Number Using a .NET Format 'Picture'
	Formatting a Time Using a .NET Format 'Picture'
	Getting the Directories Under the C Drive
	Loading an XML Document from Disk and Doing Look-ups on It
	Querying a SQL Server Database
	Reading a Performance Counter
	Reading a Text File from Disk
	Sharing a SQL Connection or Any Other .NET Object
	Using DDE to Access an Excel Spreadsheet
	Using Microsoft Exchange to Send an E-mail Message
	Using Screen-Scraping to Get the Temperature for a City
	Using SMTP to Send an E-mail Message
	Writing a Text File to Disk
	Dynamically Binding an Indirect Variable to a Reference
	Binding to Off-engine Attributes

